Rittal – The System.

Faster - better - everywhere.

Montage-, Installations- und Bedienungsanleitung

ENCLOSURES

POWER DISTRIBUTION CLIMATE CONTROL

IT INFRASTRUCTURE SOFTWARE & SERVICES

Vorwort

Sehr geehrter Kunde!

Vielen Dank, dass Sie sich für ein Rittal Liquid Cooling Package (im Folgenden auch als "LCP" bezeichnet) aus unserem Hause entschieden haben!

Die Dokumentation gilt für die folgenden Geräte der LCP Reihe (Globale Versionen):

- LCP Rack CW
- LCP Inline CW
- LCP Rack CWG
- LCP Inline CWG

In der Dokumentation sind die Stellen, an denen Informationen nur für eines der Geräte gültig sind, entsprechend gekennzeichnet.

Wir bitten Sie, diese Dokumentation sorgfältig und in Ruhe zu lesen.

Achten Sie insbesondere auf die Sicherheitshinweise im Text und auf den Abschnitt 2 "Sicherheitshinweise".

Dies ist die Voraussetzung für:

- sichere Montage des Liquid Cooling Package,
- sichere Handhabung und
- möglichst störungsfreien Betrieb.

Bewahren Sie die gesamte Dokumentation stets so auf, dass sie bei Bedarf sofort zur Verfügung steht.

Viel Erfolg wünscht Ihnen

Ihre Rittal GmbH & Co. KG

Rittal GmbH & Co. KG Auf dem Stützelberg

35745 Herborn Germany

Tel.: +49(0)2772 505-0 Fax: +49(0)2772 505-2319

E-Mail: info@rittal.de www.rittal.com www.rittal.de

Wir stehen Ihnen zu technischen Fragen rund um unser Produktspektrum zur Verfügung.

Inhaltsverzeichnis

Inhaltsverzeichnis

1 1.1 1.2 1.3 1.4 1.5 1.5.1 1.5.2 1.6	Hinweise zur Dokumentation CE-Kennzeichnung Aufbewahrung der Unterlagen Symbole in dieser Betriebsanleitung Mitgeltende Unterlagen Normative Hinweise Rechtliches zur Betriebsanleitung Copyright Geltungsbereich	. 5 5 5 5 5 5
2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.11.1	Sicherheitshinweise Allgemein gültige Sicherheitshinweise Sicherheitshinweise zum Transport Sicherheitshinweise zur Montage Sicherheitshinweise zur Matlation Sicherheitshinweise zum Betrieb Sicherheitshinweise zum Wartung Sicherheitshinweise zum Wartung Sicherheitshinweise zum Stillsetzen Bedien- und Fachpersonal Persönliche Schutzausrüstung RoHS Compliance IT-Sicherheitshinweise Maßnahmen für Produkte und Systeme	. 6 6 6 7 7 7 7 7
3 3.1 3.2 3.2.1	Gerätebeschreibung Allgemeine Funktionsbeschreibung Regelmodi Allgemeines	.9 9 10 .10
3.2.2	Automatik-Modus	. 10
3.2.3	"Delta-T"-Modus	. 11
3.2.4	Luftkonditionen	 11
3.4	Luftführung	14
3.4.1	Allgemeines	. 14
3.4.2	LCP Rack	. 14
3.4.3	LCP Inline Protruding und LCP Inline Flush	. 15
3.5		10
3.5.1	Gerätekompopenten	. 10 16
3.5.3	Luft/Wasser-Wärmetauscher	. 17
3.5.4	Lüftermodul	. 18
3.5.5	Wassermodul mit Kaltwasseranschluss	. 18
3.6	Bestimmungsgemäße und nicht bestimmun	gs-
37	Lieferumfang Liquid Cooling Package	. 10 10
3.8	Gerätespezifische Hinweise	19
3.8.1	Bildung von Redundanzen beim LCP Rack	. 19
3.8.2	Taupunktregelung	. 21
3.9	Typenschlüssel	21
3.9.1	Bedeutung der Stellen im Typenschlüssel	. 21
3.9.2	Standardgeräte	. 22
4	Transport und Handhabung	23
4.1	Transport	23
4.2	Auspacken	23

5	Montage und Aufstellung	26
5.1		20
5.1.1	Antorderungen an den Aufstellort	26
5.1.2	Autstellraum vorbereiten für LCP Inline Protruding und LCP Inline Flush	26
5.1.3	Aufstellregeln für LCP Inline Protruding und LCP Inline Flush	27
5.2	Montageablauf mit einem VX IT	20
E O 1		20
5.2.1	Aligemeines	20
5.2.2	Sellenwande abbauen	28
5.2.3	Serverschrank abdichten	29
5.2.4	Ruckseitigen Adapter am LOP inline montieren	30
5.2.5	Autstellen und Anreinen des Liquid	01
FOR	Montage der Seitenwand	00
5.2.0		33 04
5.2.1 5.2	Punch Outs	34 25
0.0		30
5.3.1	Ausbau eines Luitermoduls	30
5.3.2	Einbau eines Luttermoduls	36
5.4	Einbau des optionalen Displays	~~
	(SK 3311.030)	38
5.5	Einbau der optionalen Kondensatpumpe	~~
	(SK 3314.012)	39
5.6	Platzierung der Drucksensoren	42
6	Installation	43
61	ApachliaRan das Liquid Capling Daskage	40
0.1	Alischlieben des Liquid Cooling Package	40
6.1.1	Elektrischer Anschluss	43
6.1.2		47
6.1.3	Kuniwasseranschluss	47
6.1.4		51
6.1.5	Entluttung des Warmetauschers	51
6.2	Kunibetrieb und Regelvernalten	52
7	Konfiguration	53
71	Allgemeines	53
7.2	HTTP-Verbindung	53
7.0.1	Horstellen der Verbindung	52
7.2.1	Ändern der Netzwerkeinstellungen	50
7.2.2	Andern der Neizwerkeinstellungen	53
7.2.3		54
7.2.4		54
1.2.3	Einstellungen	00
8	Bedienuna	59
81	Beschreibung der Bedien- und Anzeige-	
0.1	elemente	59
811	Hardware der Regeleinheit des Liquid Cooling	00
0.1.1	Package	50
82	Reschreibung der Bedienung	60
0.2 8 2 1	Allgomoinos	60
0.2.1 800	Augenteines	61
0.2.2 200	Redionung im Stand Along Retrich	61
0.2.J		01
0.2.4 Qク	Automatische Turollflung LOF Kack	04
0.3	deal CP an ain Natawark	66
0.4	Conorollo Dodionum	00
ö.4		00
8.4.1	Autbau der Bildschirmseiten	66
8.4.2	Navigationsbereich im linken Bereich	66

Inhaltsverzeichnis

8.4.3	Registerkarten im Konfigurationsbereich
8.4.4	Meldungsanzeige
8.4.5	Sonstige Anzeigen
8.4.6	Andern von Parameterwerten
8.4.7	Abmelden und Andern des Passworts 69
8.4.8	Neu-Organisieren der angeschlossenen
0.5	Komponenten
8.5	Registerkarte Monitoring
8.5.1	
8.5.Z	Air Temperature
0.0.0	Coolont 72
0.0.4	Volvo 74
856	Cooling Capacity 74
8.5.7	Leakage Sensor 75
858	Condensate 75
8.5.9	Setup
8.5.10	Operating Data
8.5.11	Remote
8.5.12	Features
8.6	Registerkarte Configuration
8.7	Door Opening 80
8.8	Tasks 81
0	Undetee und Detensieherung 00
9	opdates und Datensicherung 62
10	Troubleshooting
10.1	Allgemeine Störungen 83
10.2	Meldungen am Display 85
11	Inspektion und Wartung 86
10	
12	Lagerung und Entsorgung
13	Technische Daten 88
13.1	Leistungsklasse 30 kW 88
13.1.1	LCP Rack Flush CW und LCP Inline Protruding CW
	(CW = Chilled Water)
13.1.2	LCP Inline Flush CW (CW = Chilled Water)
13.2	Leistungsklasse 35 kW 89
13.2.1	LCP Inline Flush CWG (CWG = Chilled Water
10.0	Glycol)
13.3	Leistungsklasse 44 kvv
13.3.1	CWC (CWC - Chilled Water Chical)
13/	Leistungsklasse 53 kW/ QQ
13/1	LCP Back Flush CW und LCP Inline Protruding
10.4.1	CW (CW = Chilled Water)
1/	Erestzteile 01
1-7	
15	Zubehör 92
16	Weitergehende Technische
	Informationen 94
16 1	Informationen zum Füll- und Fraänzungs-
10.1	Wasser
16.2	Kennlinien
16.2.1	Druckverlust
16.3	Übersichtszeichnungen 102
16.4	Stromlaufplan 108

16.5 16.6 16.7	Anschlussschema Wasserlaufplan Konformitätserklärung	118 119 120
17	Aufbereitung und Pflege des Kühl- mediums	121
18	Frequently Asked Questions (FAQ)	122
19	Glossar	129
20	Kundendienstadressen	130

1 Hinweise zur Dokumentation

1.1 CE-Kennzeichnung

Rittal GmbH & Co. KG bestätigt die Konformität des Kühlgeräts zur Maschinenrichtlinie 2006/42/EG und zur EG-EMV-Richtlinie 2014/30/EU. Eine entsprechende Konformitätserklärung wurde ausgestellt, Sie finden diese im Abschnitt 16.7 "Konformitätserklärung". Die vorliegende Anleitung ist die Original-Betriebsanleitung.

Das Kühlgerät ist mit nachstehendem Zeichen versehen.

CE

1.2 Aufbewahrung der Unterlagen

Die Montage-, Installations- und Bedienungsanleitung sowie alle mitgeltenden Unterlagen sind ein integraler Bestandteil des Produkts. Sie müssen den mit dem Gerät befassten Personen ausgehändigt werden und müssen stets griffbereit und für das Bedienungs- und Wartungspersonal jederzeit verfügbar sein!

1.3 Symbole in dieser Betriebsanleitung

Folgende Symbole finden Sie in dieser Dokumentation:

Gefahr!

Gefährliche Situation, die bei Nichtbeachtung des Hinweises unmittelbar zu Tod oder schwerer Verletzung führt.

Warnung!

Gefährliche Situation, die bei Nichtbeachtung des Hinweises unmittelbar zu Tod oder schwerer Verletzung führen kann.

Vorsicht!

Gefährliche Situation, die bei Nichtbeachtung des Hinweises zu (leichten) Verletzungen führen kann.

Hinweis:

Informationen zu einzelnen Arbeitsschritten, Erläuterungen oder Tipps für vereinfachende Vorgehensweisen. Außerdem Kennzeichnung von Situationen, die zu Sachschäden führen können.

Dieses Symbol kennzeichnet einen "Aktionspunkt" und zeigt an, dass Sie eine Handlung / Arbeitsschritt durchführen sollen.

1.4 Mitgeltende Unterlagen

In Verbindung mit dieser Montage-, Installations- und Bedienungsanleitung ist die übergeordnete Anlagendokumentation (sofern vorhanden) gültig.

Für Schäden, die durch Nichtbeachtung dieser Montage-, Installations- und Bedienungsanleitung entstehen, übernimmt Rittal GmbH & Co. KG keine Haftung. Dies gilt auch für das Nichtbeachten der gültigen Dokumentationen des verwendeten Zubehörs.

1.5 Normative Hinweise

1.5.1 Rechtliches zur Betriebsanleitung

Inhaltliche Änderungen behalten wir uns vor. Die Firma Rittal GmbH & Co. KG haftet nicht für etwaige Fehler in dieser Dokumentation. Eine Haftung für mittelbare Schäden, die im Zusammenhang mit der Lieferung oder dem Gebrauch dieser Dokumentation entstehen, ist ausgeschlossen, soweit dies gesetzlich zulässig ist.

1.5.2 Copyright

Weitergabe sowie Vervielfältigung dieser Unterlage, Verwertung und Mitteilung ihres Inhalts sind nicht gestattet, soweit nicht ausdrücklich zugestanden.

Zuwiderhandlungen verpflichten zu Schadenersatz. Alle Rechte für den Fall der Patenterteilung oder Gebrauchsmustereintragung vorbehalten.

1.6 Geltungsbereich

Diese Anleitung bezieht sich auf die Softwareversion V3.17.00.

In der vorliegenden Dokumentation werden durchgängig englische Screenshots gezeigt. Auch in den Beschreibungen zu den einzelnen Parametern auf der Website des Liquid Cooling Package werden die englischen Begriffe verwendet. Je nach eingestellter Sprache können die Anzeigen auf der Website des Liquid Cooling Package hiervon abweichen (vgl. Montage-, Installations- und Bedienungsanleitung des IoT Interface 3124.300).

2 Sicherheitshinweise

Die Liquid Cooling Packages der Fa. Rittal GmbH & Co. KG wurden unter Berücksichtigung aller Sicherheitsmaßnahmen entwickelt und produziert. Trotzdem gehen von dem Gerät einige unvermeidliche Gefahren aus. Die Sicherheitshinweise geben Ihnen einen Überblick über diese Gefahren und die notwendigen Sicherheitsvorkehrungen.

Im Interesse Ihrer Sicherheit und der Sicherheit anderer Personen lesen Sie diese Sicherheitshinweise bitte sorgfältig vor Montage und Inbetriebnahme des Liquid Cooling Package!

Benutzerinformationen in dieser Anleitung und auf dem Gerät bitte sorgfältig befolgen.

2.1 Allgemein gültige Sicherheitshinweise

Bitte beachten Sie die nachfolgenden allgemeinen Sicherheitshinweise.

- Tragen Sie bei allen Arbeiten am Gerät die vorgeschriebene persönliche Schutzausrüstung (vgl. Abschnitt 2.9 "Persönliche Schutzausrüstung").
- Nehmen Sie am LCP keine Änderungen vor, die nicht in dieser oder in den mitgeltenden Montage- und Bedienungsanleitungen beschrieben sind.
- Das LCP darf ausschließlich mit dem von Rittal vorgesehenen Systemzubehör kombiniert und betrieben werden.
- Beachten Sie außer diesen allgemeinen Sicherheitshinweisen unbedingt auch die spezifischen Sicherheitshinweise, im Zusammenhang mit den in den folgenden Kapiteln aufgeführten Tätigkeiten.

2.2 Sicherheitshinweise zum Transport

- Es besteht eine Verletzungsgefahr durch herabfallende Lasten. Beim Transport des Gerätes mit Hubwagen, Stapler oder Kran nicht unter die schwebende Last treten!
- Es besteht eine Verletzungsgefahr durch Umkippen des Geräts nach dem Lösen der Befestigungsschrauben auf der Palette. Tragen Sie die persönliche Schutzausrüstung!
- Es besteht eine Verletzungsgefahr beim Durchschneiden der vorgespannten Umreifungsbänder. Tragen Sie die persönliche Schutzausrüstung!
- Es besteht eine Verletzungsgefahr durch das hohe Gewicht des Geräts. Bitte beachten Sie die maximal zulässigen Hebegewichte für Personen. Ggf. ist eine Hebevorrichtung zu verwenden.

2.3 Sicherheitshinweise zur Montage

6

- Montage der Geräte von qualifizierten, von Rittal geschulten Fachleuten durchführen lassen.
- Es besteht eine Verletzungsgefahr durch Umkippen des Geräts. In der aufrechten Position besteht eine Kippgefahr des LCP, solange es noch nicht mit einem Serverrack verbunden ist. Gerät in aufrechter Position durch zweite Person sichern lassen.

- Es besteht eine Verletzungsgefahr, wenn das Gerät auf einem Sockel montiert wird bzw. die Nivellierfüße eingestellt werden. Tragen Sie die persönliche Schutzausrüstung!
- Zwischen dem Serverrack und dem LCP besteht während der Montage eine Klemmgefahr. Stellen Sie sicher, dass sich keine Gliedmaßen im Gefahrbereich befinden, wenn die Schränke angereiht werden. Tragen Sie die persönliche Schutzausrüstung!
- Beim Verschrauben der Komponenten besteht eine Verletzungsgefahr an den Anreihverbindern. Tragen Sie die persönliche Schutzausrüstung!

2.4 Sicherheitshinweise zur Installation

- Es besteht eine Quetschgefahr beim Einbringen der Schottung in den Serverschrank. Tragen Sie die persönliche Schutzausrüstung!
- Es besteht eine Klemm- und Schneidgefahr beim Anschrauben sowie Abdichten der Kühlmittelleitungen. Tragen Sie die persönliche Schutzausrüstung!
- Beim Einbau der Kondensatpumpe besteht die Gefahr eines elektrischen Schlags. Vor Beginn der Arbeiten das LCP am Hauptschalter vollständig ausschalten und gegen unbeabsichtigtes Einschalten sichern.
- Beim Einbau der Kondensatpumpe besteht Verletzungsgefahr durch scharfe Kanten im Innenraum des LCP. Tragen Sie die persönliche Schutzausrüstung!
- Beim Einbau der Kondensatpumpe sicherstellen, dass alle Schläuche korrekt montiert sind, um ein unerwünschtes Eindringen von Wasser ins Gerät zu verhindern.
- Beim Einbau des Displays besteht eine Verletzungsgefahr durch scharfe Kanten im Innenraum des LCP. Tragen Sie die persönliche Schutzausrüstung!
- Beim Einbau von Lüftermodulen besteht die Gefahr eines elektrischen Schlags. Vor Beginn der Arbeiten a, Elektronikmodul den zum Lüfter gehörenden Schalter ausschalten.
- Beim Einbau von Lüftermodulen besteht eine Verletzungsgefahr durch scharfe Kanten im Innenraum des LCP. Tragen Sie die persönliche Schutzausrüstung!
- Arbeiten an elektrischen Anlagen oder Betriebsmitteln dürfen nur von einer Elektrofachkraft oder von unterwiesenem Personal unter Leitung und Aufsicht einer Elektrofachkraft den elektrotechnischen Regeln entsprechend vorgenommen werden.
- Nur spannungsisoliertes Werkzeug benutzen. Tragen Sie die persönliche Schutzausrüstung!
- Die Spannungsangaben im Schaltplan / auf dem Typenschild müssen mit der Netzspannung übereinstimmen.
- Durch eine fehlerhafte Montage und Installation besteht die Gefahr von Kondensatbildung im Gerät, die

zu einem elektrischen Kurzschluss oder austretender Flüssigkeit führen kann.

2.5 Sicherheitshinweise zum Betrieb

- Es besteht die Gefahr von Fehlfunktionen oder Zerstörung. Keine Veränderungen am Gerät vornehmen! Nur Original-Ersatzteile verwenden.
- Im Betrieb des LCP kann es insbesondere bei einer Bedienung des Geräts direkt am Display zu einem erhöhten Geräuschpegel kommen. Tragen Sie die Persönliche Schutzausrüstung!
- Die einwandfreie Funktion des Gerätes kann nur gewährleistet werden, wenn es unter den vorgesehenen Umgebungsbedingungen betrieben wird. Stellen Sie, soweit möglich, sicher, dass die der Auslegung zugrunde liegenden Umgebungsbedingungen, z. B. Temperatur, Luftfeuchtigkeit, Luftreinheit, eingehalten werden.
- Beim Auftreten von Leckagen besteht Verletzungsgefahr durch ausgetretenes K
 ühlmedium, insbesondere Glykol. Tragen Sie die pers
 önliche Schutzausr
 üstung, nehmen Sie ausgelaufenes K
 ühlmedium mit geeignetem Lappen oder Bindemittel auf und beseitigen Sie den Grund f
 ür Leckagen umgehend.
- Duch die Laufräder der Ventilatoren besteht eine Verletzungsgefahr. Personen und Gegenstände von den Laufrädern der Ventilatoren entfernt halten! Abdeckbleche erst bei unterbrochener Stromzufuhr und stehenden Laufrädern öffnen! Keine Arbeiten ohne mechanischen Schutz durchführen! Bei Wartungsarbeiten jeweiligen Ventilator, wenn möglich, stillsetzen! Lange Haare zusammenbinden! Keine losen Kleidungsstücke tragen! Nach Spannungsunterbrechung läuft der Ventilator automatisch wieder an!

2.6 Sicherheitshinweise zur Wartung

- Es besteht die Gefahr von Schnittverletzungen insbesondere durch scharfe Kanten des Wärmetauschermoduls. Vor Montage- und Reinigungsarbeiten Persönliche Schutzausrüstung anlegen!
- Beim Aus- und Einbau eines Lüftermoduls besteht Verletzungsgefahr durch scharfe Kanten im Innenraum des LCP, ein Herunterfallen des Moduls hohe Luftgeschwindigkeiten und Lärm. Tragen Sie die Persönliche Schutzausrüstung!

2.7 Sicherheitshinweise zum Stillsetzen

 Bei Lagerung und Transport unterhalb des Gefrierpunktes ist der Wasserkreislauf mit Druckluft komplett zu entleeren!

2.8 Bedien- und Fachpersonal

Die Installation, Inbetriebnahme, Wartung und Instandsetzung dieses Gerätes dürfen nur von qualifizierten mechanischen Fachleuten durchgeführt werden. Die Gerätebedienung im laufenden Betrieb darf nur eine eingewiesene Person durchführen.

2.9 Persönliche Schutzausrüstung

Bei allen Arbeiten am Gerät, insbesondere wenn das Personal mit dem Kühlmedium (bei Einsatz eines Wasser-Glykol-Gemischs) in Kontakt kommen kann, muss die persönliche Schutzausrüstung, bestehend wenigstens aus wasserdichten Schutzhandschuhen sowie einer Schutzbrille getragen werden.

Insbesondere während Montage, Installation und Wartung des Geräts muss die persönliche Schutzausrüstung getragen werden, bestehend wenigstens aus schnittfesten Handschuhen und Sicherheitsschuhen. Des Weiteren wird bei allen Arbeiten in der Nähe des Geräts die Verwendung eines geeigneten Gehörschutzes und eines Haarnetzes empfohlen.

Bei allen Arbeiten am Gerät, insbesondere auf der Ausblasseite, wird das Tragen einer Schutzbrille empfohlen, um Augenverletzungen durch die hohen Luftgeschwindigkeiten zu vermeiden.

2.10 RoHS Compliance

Das LCP erfüllt die Anforderungen der EU-Richtlinie 2011/65/EU zur Beschränkung der Verwendung gefährlicher Stoffe in Elektro- und Elektronikgeräten (RoHS) vom 1. Juli 2011.

Hinweis:

Eine entsprechende Selbstauskunft zur RoHS-Richtlinie finden Sie im Internet unter www.rittal.de.

Sicherheitshinweis gemäß Verordnung (EG) Nr. 1907/2006

Das Produkt enthält folgende SVHC-Stoffe:

SVHC-Inhaltsstoff	CAS Nr.
4,4'-Isopropylidenediphenol	80-05-7
Blei	7439-92-1
Cadmium	7440-43-9
Quecksilber	7439-97-6
Bleititanat	12060-00-3
Bleioxid	1317-36-8
Bortrioxid	1303-86-2

Tab. 1: SVHC-Inhaltsstoffe

Laut Angaben des Herstellers entstehen bei ordnungsgemäßen Umgang mit dem Produkt während des Gebrauchs keinerlei Gesundheitsrisiken. Nach Gebrauch muss das Produkt entsprechend der geltenden gesetzlichen Regelungen ordnungsgemäß entsorgt werden.

2.11 IT-Sicherheitshinweise

Produkte, Netzwerke und Systeme müssen vor unberechtigten Zugriffen geschützt werden, um die Verfügbarkeit, die Vertraulichkeit und die Integrität von Daten zu gewährleisten.

Dies muss durch organisatorische und technische Maßnahmen umgesetzt werden. Für erhöhte Sicherheitsanforderungen empfiehlt Rittal die folgenden Maßnahmen zu beachten. Darüber hinaus finden Sie weiterführende Informationen auf den Webseiten des Bundesamts für Sicherheit in der Informationstechnik.

2.11.1 Maßnahmen für Produkte und Systeme Produkte und Systeme nicht ungeschützt in öffentliche Netzwerke einbinden

Stellen Sie sicher, dass das System nur in geschützten Netzwerken betrieben wird.

Firewall einrichten

- Zum Schutz Ihrer Netzwerke und der eingebundenen Produkte und Systeme vor externen Einflüssen richten Sie eine Firewall ein.
- Zur Segmentierung eines Netzwerks oder zur Isolierung einer Steuerung verwenden Sie ebenso eine Firewall.

Defense-in-Depth-Mechanismen in der Planungsphase berücksichtigen

- Berücksichtigen Sie bei Ihrer Anlagenplanung Defense-in-Depth-Mechanismen.
- Defense-in-Depth-Mechanismen ("Tiefenverteidigung") umfassen mehrere Ebenen von aufeinander abgestimmten Sicherheitsmaßnahmen.

Zugangsberechtigungen beschränken

Beschränken Sie die Zugangsberechtigungen zu Netzwerken und Systemen auf die Personen, die eine Berechtigung benötigen.

Zugriffe absichern

- Verwenden Sie nicht die Standard-Passwörter, sondern nur sichere lange Passwörter, die Zahlen, große/ kleine Buchstaben, Zeichen und keine Wiederholungen beinhalten.
- Erzeugen Sie möglichst zufällige Passwörter mit einem Passwort-Manager.

Aktuelle Firmware-Version verwenden

- Stellen Sie sicher, dass auf allen Geräten die aktuelle Rittal Firmware verwendet wird.
- Die aktuelle Firmware und ein Programm zum Updaten der Firmware werden auf den jeweiligen Produktseiten im Internet zum Download bereitgestellt.

Bei neuen Firmware-Versionen sind die jeweiligen Release-Notes zu beachten.

Aktuelle Sicherheits-Software verwenden

- Für die Identifizierung und Eliminierung von Sicherheitsrisiken wie Viren, Trojanern und anderer Schad-Software, sollte auf allen PCs und Smartphones eine Sicherheits-Software installiert sein und auf aktuellem Stand gehalten werden.
- Nutzen Sie Whitelist-Tools zur Überwachung des Gerätekontexts.
- Zur Überprüfung der Kommunikation Ihrer Anlage, nutzen Sie ein Intrusion-Detection-System.

Regelmäßige Bedrohungsanalyse durchführen

- Rittal empfiehlt Ihnen regelmäßig Bedrohungsanalysen durchzuführen.
- Durch Bedrohungsanalysen können Sie feststellen, ob Ihre getroffenen Ma
 ßnahmen wirksam sind.

USB-Schnittstelle gegen Zugriff schützen

- USB-Schnittstellen benötigen Schutz gegen physischen Zugriff. Stellen Sie sicher, dass unbefugte Personen keinen Zugriff auf USB-Schnittstellen haben.
- Bei einem unbefugten Zugriff auf USB-Schnittstellen sind ggf. sensible Daten f
 ür jeden auslesbar.

3.1 Allgemeine Funktionsbeschreibung

Das Liquid Cooling Package ist im Wesentlichen ein Luft/Wasser-Wärmetauscher. Es dient zum Abführen hoher Verlustleistungen aus Serverschränken bzw. zur effektiven Kühlung der in einen Serverschrank eingebauten Geräte.

Die Luftführung im Liquid Cooling Package unterstützt das "Front to Back"-Kühlprinzip der im Serverschrank eingebauten Geräte. Die von den Geräten im Serverschrank ausgeblasene Warmluft wird von den Lüftern hinten direkt aus dem Serverschrank (LCP Rack) bzw. aus dem Warmgang (LCP Inline Protruding und LCP Inline Flush) angesaugt und so durch das Wärmetauschermodul geleitet.

Im Wärmetauschermodul wird die erwärmte Luft durch einen Luft/Wasser-Wärmetauscher geleitet und deren Wärmeenergie (Verlustleistung des Servers) an ein Kaltwassersystem abgegeben. Dabei wird die Luft in den freigegebenen Parametern frei wählbar auf eine Temperatur abgekühlt und anschließend direkt vor die 19"-Ebene im Serverschrank (LCP Rack) bzw. in den Kaltgang (LCP Inline Protruding und LCP Inline Flush) geleitet.

In den CWG-Geräten (CWG = Chilled Water Glycol) ist ein anderer Wärmetauscher als in den CW-Geräten (CW = Chilled Water) verbaut. Dieser ist speziell für den Betrieb mit einem Wasser-Glykol-Gemisch (Antifrogen-N) und auf die geringere spezifische Wärmekapazität des Gemischs gegenüber reinem Wasser ausgelegt, so dass ebenfalls eine hohe Kühlleistung erreicht wird. Der Wärmetauscher der CWG-Geräte ist des Weiteren so ausgelegt, dass im Verhältnis höhere Wasserrücklauftemperaturen erzeugt werden (hohes Delta-T), was den effizienten Einsatz einer nachgeschalteten Wärmepumpe ermöglicht. Zudem sind die CWG-Geräte standardmäßig mit einem Prallflächen-Tropfenabscheider ausgerüstet.

Im Auslieferungszustand erfolgt das Ausblasen der Kaltluft beim LCP Inline zu beiden Seiten. Durch Montage einer Seitenwand bzw. Schottwand kann das Ausblasen auf nur eine Seite begrenzt werden.

Abb. 1: Luftführung am LCP Rack - Draufsicht

Legende

- 1 Lufteinlass
- 2 Wärmetauscher
- 3 Luftauslass
- 4 Lüftermodul

Abb. 2: Luftführung am LCP Inline Protruding – Draufsicht

Legende

- 1 Lufteinlass
- 2 Wärmeübertrager
- 3 Luftauslass
- 4 Lüftermodul

Abb. 3: Luftführung am LCP Inline Flush – Draufsicht

Legende

- 1 Lufteinlass
- 2 Wärmeübertrager
- 3 Luftauslass
- 4 Lüftermodul

Eventuell anfallendes Kondensat wird bei CWG-Geräten in der im Wassermodul des Liquid Cooling Package integrierten Bodenwanne gesammelt und von dort über einen Kondensatablaufschlauch nach außen geleitet.

Hinweis:

Bei den CW-Geräten muss die Wasservorlauftemperatur stets so gewählt (geregelt) werden, dass sie bei bestehender Umgebungstemperatur und -luftfeuchtigkeit im Rechenzentrum ständig über dem Taupunkt liegt. Der Taupunkt lässt sich aus dem Mollier-h-x-Diagramm ersehen (Abb. 6). Es wird darüber hinaus die Einhaltung des ASHRAE-Standards "ASHRAE TC 9.9, 2011 Thermal Guidelines for Data Processing Environments" empfohlen.

3.2 Regelmodi

3.2.1 Allgemeines

Das Liquid Cooling Package kann je nach Einsatzbedingung in unterschiedlichen Regelmodi betrieben werden:

- Automatik-Modus: Die F
 ührungsgr
 ö
 ße ist die Servereintrittstemperatur (Kaltluft). Der Wasserdurchfluss und die Drehzahl der L
 üfter werden entsprechend der ben
 ötigten K
 ühlleistung geregelt.
- Delta-T-Modus: Die F
 ührungsgr
 ö
 ße ist die Solltemperatur des Wasserr
 ücklaufs. Die Servereintrittstempera-

tur (Kaltluft) kann sich innerhalb der vorgegebenen, einstellbaren Grenzen bewegen.

- Manuelle Regelung: Der Wasserdurchfluss und die Drehzahl der Lüfter werden manuell vorgegeben. Führungsgrößen sind die dann eingestellten Parameter.
- Remote-Betrieb: Der Wasserdurchfluss und die Drehzahl der Lüfter werden von einer externen Software vorgegeben. Führungsgrößen sind die externen Parameterveränderungen.

_ Hinweis:

Für Schäden und Folgeschäden durch nicht fachgerechtes Einstellen der Parameter übernimmt Rittal keine Haftung.

 Taupunktregelung: In diesem Modus überwacht der bereits installierte Temperatur-/Feuchtesensor das Verhältnis der Temperatur zur Luftfeuchte. Beim Unterschreiten des Taupunkts werden die Lüfterdrehzahlen für eine vorgegebene Zeit angehoben.

_ Hinweis:

Die Taupunktregelung darf nur bei Geräten mit integriertem Prallflächen-Tropfenabscheider aktiviert werden (CWG-Geräte, ggf. kundenspezifische Geräte).

3.2.2 Automatik-Modus

Die Regelung der Temperatur der eingeblasenen Kaltluft erfolgt durch den ständigen Abgleich der Ist-Temperatur mit der am Liquid Cooling Package eingestellten Soll-Temperatur (voreingestellt +24 °C).

Überschreitet die Servereintrittstemperatur den Soll-Wert, öffnet der Regelkugelhahn im Kühlwassersystem stufenlos (0 – 100 % Öffnungsgrad) und der Wärmetauscher wird mit kaltem Wasser versorgt.

Abb. 4: Öffnungsgrad des Regelkugelhahns

Ist die Differenz "Servereintrittstemperatur – Soll-Wert" – kleiner 0: der Regelkugelhahn wird weiter geschlossen.

- größer 0: der Regelkugelhahn wird weiter geöffnet.
- gleich 0: der Regelkugelhahn behält den Öffnungsgrad bei.

Aus der Temperaturdifferenz zwischen Sollwert und abgesaugter Warmluft wird die notwendige Lüfterdrehzahl ermittelt und entsprechend eingeregelt. Die Regelung versucht, durch Ansteuern des Regelkugelhahns die Lufttemperatur vor der 19"-Ebene (LCP Rack) bzw. im Kaltgang (LCP Inline Protruding und LCP Inline Flush) konstant zu halten.

Hinweis:

Durch den inneren Aufbau des Regelkugelhahns liegt der tatsächliche Öffnungspunkt bei 19 %.

Abb. 5: Lüftersteuerung

- Die untere Grenze des Delta-T-Werts ist einstellbar im Bereich zwischen 0 K...20 K.
- Die obere Grenze des Delta-T-Werts ist einstellbar im Bereich zwischen 3 K...40 K.
- Der untere Drehzahlwert ist einstellbar im Bereich zwischen der Mindest-Drehzahl und 80 % der Maximal-Drehzahl.

Optional: Regelung der Lüfterdrehzahl auf die Druckdifferenz

Bei der Regelung der Lüfterdrehzahl auf die Druckdifferenz wird der Druck vor und hinter den im Serverschrank eingebauten Geräten ermittelt.

Der ermittelte Wert wird mit dem eingestellten Setpoint für die Druckdifferenz verglichen und damit die Lüfterdrehzahl ermittelt.

3.2.3 "Delta-T"-Modus

Im "Delta-T"-Modus erfolgt die Regelung der Wasser-Rücklauftemperatur auf den voreingestellten Sollwert. Dies erfolgt durch Anpassen der Wassermenge und Ändern der Zulufttemperatur (Kaltluft) innerhalb der einzustellenden Grenzen.

Ist eine Regelung innerhalb der eingestellten Werte nicht möglich, schaltet das Gerät in die Regelung der Zulufttemperatur um (vgl. Abschnitt 3.2.2 "Automatik-Modus").

3.2.4 Externer Temperatursensor

Das Virtual Device "LCP Temperature Controller" wird dazu verwendet, dem LCP CW VX einen externen Temperaturwert übergeben zu können. Mit diesem Wert wird die Eingangsgröße für das Ventil im Automatikbetrieb überschrieben.

Vorgehensweise

- Externen Temperatursensor, z. B. 7030.110, im Kaltgang installieren und an den Climate Controller anschließen. Dazu sollte die Regelung des Ventils auf "Automatik" eingestellt sein.
- Ein Virtual Device anlegen.
- Temperatursensor auswählen.
- Gerätemeldung bestätigen, z. B. über den "SET" Taster.

Der vom externen Temperatursensor gemessene Wert wird als Eingangsgröße für das Ventil verwendet.

___ Hinweis:

Im LCP wird die aktive Regelung in der Visualisierung und im Device Tree angezeigt.

3.3 Luftkonditionen

Das Liquid Cooling Package dient dazu, die thermische Last abzuführen, die vom IT-Equipment erzeugt wird. So wird verhindert, dass der Aufstellort vom IT-Equipment erwärmt wird. Werden IT-Systeme in zu hohen Umgebungstemperaturen betrieben, führt dies u. U. zu Fehlfunktionen und zu einem eingeschränkten Betrieb des Systems. Welche Systemtemperatur die richtige ist, richtet sich nach den herstellerspezifischen Angaben. Mit den Liquid Cooling Packages werden nur die thermischen Lasten des IT-Equipments abgeführt, nicht jedoch thermische Lasten, die durch Beleuchtung und andere Wärmequellen entstehen. Diese Lasten müssen von anderen raumlufttechnischen Anlagen (RLT-Anlagen) abgeführt werden. Diese RLT-Anlagen im Rechenzentrum sind zuständig für die Konditionierung der Luftqualität. Gibt es hier definierte Forderungen an die relative Feuchte am Aufstellort für den Betrieb des IT-Equipments, lässt sich diese am effizientesten über die RLT-Anlage regulieren.

Je nach Umgebungsbedingungen empfiehlt es sich generell die dem Rechenzentrum zugeführte Zuluft über eine RLT-Anlage zu regeln. So ist sichergestellt, dass es nicht durch die Zufuhr von zu warmer bzw. zu feuchter Luft in das Rechenzentrum zu Kondensation am Wärmetauscher kommt. Falls zwingend mit Vorlauftemperaturen unterhalb des Taupunkts gearbeitet werden muss, so muss ebenfalls der Frischlufteintrag über eine RLT-Anlage geregelt werden.

Ist in einem Rechenzentrum eine zentrale RLT-Anlage für die Grund-Klimatisierung installiert und soll eine LCP-Kühlung zum Ausbringen der thermischen Lasten projektiert werden, müssen folgende Informationen vorliegen:

- Relative Feuchte der Raumluft (Zuluft) in %
- Raumlufttemperatur (Zuluft-Temperatur) in °C
- Kaltwasser-Systemtemperatur (sofern vorhanden)

ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) empfiehlt hier Server-Zulufttemperaturen von 18 °C bis 27 °C. Zur Projekttierung muss die gewählte Server-Zulufttemperatur mit dem Hersteller des IT-Equipments und dem Betreiber abgestimmt werden.

Mit den gegebenen Konditionen muss anhand des Mollier-h-x-Diagramms geprüft werden, ob bei einer Kühlung mit der gegebenen Kaltwassertemperatur der Taupunkt unterschritten wird (Abb. 6 "Mollier-h-x-Diagramm für feuchte Luft").

Hinweis:

Um Unterstützung zu erhalten, kontaktieren Sie Rittal.

Die blauen Markierungen im Mollier-h-x-Diagramms zeigen beispielhaft die Bestimmung eines Taupunkts für

Raumtemperatur: 22 °C

- Relative Feuchte: 50 %

So ergibt sich hier ein Taupunkt von 11 °C.

Sensible und latente Kühlleistung

Liegt die Oberflächentemperatur vom Wärmetauscher des Liquid Cooling Package unterhalb des Taupunkts, kommt es zur Kondensation am Wärmetauscher. Hierdurch entstehen Kühlleistungsverluste, da die eingesetzte Energie teilweise zur Kondensation benötigt wird (sog. latente Kühlleistung).

Wird jedoch mit Kaltwassertemperaturen gearbeitet, bei denen die Oberflächentemperatur des Wärmetauschers über dem Taupunkt liegt, wird die eingesetzte Energie vollständig zur Kühlung der Server-Zuluft verwendet (sog. sensible Kühlleistung).

Eine bewährte hydraulische Schaltung, mit der einfach und schnell die benotigte Wassermenge mit der korrekten Temperatur zur Verfügung gestellt werden kann, ist im Abschnitt 6.1.3 "Kühlwasseranschluss" beschrieben.

Abb. 6: Mollier-h-x-Diagramm für feuchte Luft

3 Gerätebeschreibung

3.4 Luftführung

3.4.1 Allgemeines

Um eine ausreichende Kühlung im Serverschrank zu erreichen, muss sichergestellt sein, dass die Kühlluft ihren Weg durch das Innere der eingebauten Geräte nehmen muss und nicht seitlich daran vorbeiströmen kann.

Die gezielte Luftführung im Serverschrank hat elementare Auswirkungen auf die abzuführende Verlustleistung.

Um die gezielte Luftführung im System sicherzustellen, ist der Serverschrank vertikal in einen Warmluft- und einen Kaltluftbereich zu unterteilen. Die Unterteilung erfolgt im Frontbereich der Servereinbauten links und rechts der 19"-Ebene mit Hilfe von Schaumstoffstreifen bzw. Luftleitblechen, die abhängig von Schrankbreite und Anzahl der zu kühlenden Serverschränke als Zubehörartikel bestellt werden können (vgl. Abschnitt 15 "Zubehör").

Sind im Serverschrank auch Geräte eingebaut, die von der Seite durchströmt werden (z. B. Switches, Router, etc.), können auch diese durch gezieltes Versetzen der Schaumstoffstreifen bzw. Luftleitbleche gekühlt werden.

Hinweis:

Die 19"-Ebene muss gleichfalls vollständig verschlossen werden. Bei einem voll bestückten Serverschrank ist dies bereits der Fall. Bei einer Teilbestückung müssen die offenen Höheneinheiten (HE) der 19"-Ebene mit Blindplatten verschlossen werden, die im Rittal Zubehör erhältlich sind (vgl. Abschnitt 15 "Zubehör").

Das Einhalten dieser Vorgaben ist umso wichtiger, je mehr Einbauten im Serverschrank vorhanden sind.

3.4.2 LCP Rack

Das LCP Rack kann wahlweise rechts oder links an einen Serverschrank angereiht werden.

Abb. 7: LCP Rack an einem Serverschrank

Das LCP Rack kann auch zwischen zwei Serverschränken eingereiht werden.

LCP Rack an zwei Serverschränken Abb. 8:

Das LCP Rack bildet zusammen mit dem angereihten Serverschrank ein luftseitig geschlossenes Kühlsystem mit horizontaler Luftführung. Die Oberflächen der Gehäuse geben, je nach Umgebungsbedingungen, bis ca. 5 % der Gesamtwärmeenergie an den Raum ab. Dies kann aus physikalischen Gründen nicht vermieden werden.

Abb. 9: Luftführung bei einem angereihten Serverschrank – Draufsicht

Legende

- 1 LCP Rack
- 2 Serverschrank

Abb. 10: Luftführung bei zwei angereihten Serverschränken – Draufsicht

Legende

- 1 Serverschrank
- 2 LCP Rack

Das System aus LCP Rack und Serverschrank sollte möglichst gut abgedichtet sein, um ein Ausströmen der Kühlluft zu verhindern. Dies wird dadurch erreicht, dass der Schrank mit Seitenwänden, Dach- und Bodenblechen ausgestattet ist und evtl. vorhandene Kabeleinführungen, z. B. mit geeigneten Bürstenleisten, verschlossen sind.

Im laufenden Betrieb sind sowohl Front- als auch Rücktüren vollständig geschlossen zu halten.

Das System muss jedoch nicht vollständig luftdicht abgeschlossen sein, da dies aufgrund der hohen und aufeinander abgestimmten Luftvolumenströme der Serverund der LCP-Lüfter nicht notwendig ist.

3.4.3 LCP Inline Protruding und LCP Inline Flush

Die gezielte Luftführung durch Warmluftabsaugung aus dem Warmgang und Kaltluftausblasung in den Kaltgang hat elementare Auswirkungen auf die abzuführende Verlustleistung.

Um eine ausreichende Kühlung im Serverschrank zu erreichen, muss sichergestellt sein, dass die Kühlluft ihren Weg durch das Innere der eingebauten Geräte nehmen muss und nicht seitlich daran vorbeiströmen kann.

Abb. 11: Luftführung bei angereihten Serverschränken – Draufsicht

Legende

- 1 LCP Inline Protruding
- 2 Serverschrank
- 3 LCP Inline Flush

Dazu sollte das System aus LCP Inline Protruding bzw. LCP Inline Flush, Serverschrank und Kaltgang-Schottung möglichst gut abgedichtet sein, um einen Kühlleistungsverlust durch Vermischung von Warm- und Kaltluft zu verhindern. Dies wird dadurch erreicht, dass der Kaltgang mittels Türen am Anfang und Ende der Rackreihen verschlossen wird und durch Dachelemente eine Abdichtung zur Decke hin stattfindet. Vorhandene Kabeleinführungen werden zusätzlich, z. B. mit geeigneten Bürstenleisten, verschlossen.

3.5 Geräteaufbau

3.5.1 Schematischer Aufbau

Der schematische Aufbau ist in der folgenden Abbildung zu sehen:

Abb. 12: Schematischer Aufbau eines Liquid Cooling Package – Rechte Seitenansicht

Legende

- 1 Wasserrücklauf (Option "oben")
- 2 Wasservorlauf (Option "oben")
- 3 Elektronikmodul mit Climate Controller
- 4 CMC III Differenzdrucksensoren (optional)
- 5 NTC-Sensoren Servereintrittstemperatur (3x)
- 6 Prallflächen-Tropfenabscheider (bei CWG-Geräten und kundenspezifischen Ausführungen)
- 7 Lüftermodul
- 8 Leckagesensor
- 9 Leckagesensor (Kondensatpumpe, optional)
- 10 Bodenwanne
- 11 Kondensatablauf
- 12 Not-Kondensatablauf
- 13 Wasservorlauf (Option "unten")
- 14 Wasserrücklauf (Option "unten")
- 15 NTC-Sensor Vorlauf Kühlmedium
- 16 NTC-Sensor Rücklauf Kühlmedium
- 17 Volumenstrommesser
- 18 Regelkugelhahn
- 19 Rückschlagventil
- 20 Kondensatpumpe (optional)
- 21 CMC III Temperatur-/Feuchtesensor (bei CWG-Geräten und kundenspezifischen Ausführungen)
- 22 Wärmeübertrager
- 23 NTC-Sensoren Serveraustrittstemperatur (3x)

Der Aufbau eines Liquid Cooling Package besteht aus einem Elektronikmodul mit dem Climate Controller, einem Wassermodul, einem Wärmeübertrager und den Lüftermodulen. Standardmäßig ist im Auslieferungszustand die folgende Anzahl Lüftermodule in die Geräte eingebaut:

Gerät\Kühlleistung	30 kW	53 kW	44 kW (CWG)
LCP Rack	1 Modul	4 Module	4 Module
LCP Inline Protruding	1 Modul	4 Module	4 Module
LCP Inline Flush	2 Module	_	2 Module

Tab. 2: Anzahl Luftermodule im Auslieferungszustand

Die Lüftermodule und das Wassermodul werden ebenfalls vom Climate Controller gesteuert.

3.5.2 Gerätekomponenten

Abb. 13: Liquid Cooling Package Vorderseite – Fronttür geöffnet

Legende

- 1-6 Lüfter 1 bis 6 (hier Vollbestückung mit 6 Lüftern)
- 7 LCP-Tür
 - 8 Optionales Display mit Touchfunktion (Rückseite)
 - 9 VX Rahmen
 - 10 Elektronikmodul mit Climate Controller

Die Lüfter sind im Gerät von oben nach unten durchnummeriert (bei Vollbestückung der Geräte LCP Rack und LCP Inline Protruding von 1 bis 6, bei Vollbestückung des Geräts LCP Inline Flush von 1 bis 4). So ist eine einfache Zuordnung zum zugehörigen Schalter im Elektronikmodul möglich.

Das Elektronikmodul besteht aus folgenden Komponenten:

- 3 Ein-/Ausschalter für die Lüfterpaare 1/2, 3/4 und 5/6
- AC/DC-Netzteil für Climate Controller

- EMV Schutzorgane

Abb. 14: Elektronikmodul

Legende

- 1 Ein-/Ausschalter Lüfter 1/2
- 2 Ein-/Ausschalter Lüfter 3/4
- 3 Ein-/Ausschalter Lüfter 5/6

Abb. 15: LCP Inline Rückseite - Rücktür geöffnet

Legende

- 1 LCP-Rücktür
- 2 Bodenwanne mit Kondensatablauf
- 3 Regelkugelhahn
- 4 Wasseranschluss Vorlauf G1½" Außengewinde
- 5 Wasseranschluss Rücklauf G11/2" Außengewinde
- 6 Luft/Wasser-Wärmetauscher
- 7 Entlüftungsventil

8 Netzanschluss, Netzwerkanschluss sowie Anschluss optionale Kondensatpumpe

Hinweis:

Die Rückseite des LCP Rack sieht prinzipiell genauso aus wie die des LCP Inline. Sie ist jedoch mit einer nicht-perforierten Tür verschlossen.

Das Liquid Cooling Package besteht aus einem soliden Rahmengestell in Schweißausführung, in das der Wärmetauscher, die Lüftermodule und das Wassermodul eingebaut sind.

Seitlich sind links und rechts jeweils ein breites und ein schmales Wandblech montiert.

Die Wandbleche sind im vorderen Bereich auf der gesamten Höhe mit Luftaustrittsöffnungen versehen, um die Kaltluftzufuhr zum Server (LCP Rack) bzw. zum Kaltgang (LCP Inline) zu gewährleisten.

Im hinteren Bereich sind die Wandbleche beim LCP Rack auf der gesamten Höhe und über ihre gesamte Breite mit Lufteintrittsöffnungen versehen, um die Warmluftabfuhr aus dem Server zu gewährleisten.

Zwischen diesen Wandblechen sind sieben Böden bzw. beim LCP Inline Flush fünf Böden angeordnet, die den vorwärtigen Teil des Liquid Cooling Package in unterschiedlich hohe Einbauräume unterteilen. Der oberste Boden trägt das Elektronikmodul. Darunter befinden sich die Einbauräume für die Lüfter. Im Wassermodul sind alle Komponenten für die Kühlwasserversorgung und das Kondensatmanagement auf dem Boden des Liquid Cooling Package integriert.

Die Vorder- und Rückseite des Liquid Cooling Package sind jeweils mit einer Tür mit 4-Punkt-Verriegelung verschlossen.

Beim LCP Rack verschließen diese Türen das Gerät. Beim LCP Inline Protruding und beim LCP Inline Flush ist die hintere Tür perforiert, um die Warmluftabfuhr aus dem Warmgang zu gewährleisten. Beim LCP Inline Flush ist zusätzlich die vordere Tür perforiert, um die Kühlluftzufuhr in den Kaltgang zu gewährleisten. Auf der Vorderseite ist optional das Display mit Touchfunktion für die Bedienung im Stand-Alone-Betrieb angeordnet.

3.5.3 Luft/Wasser-Wärmetauscher

Der Luft/Wasser-Wärmetauscher ist im mittleren Bereich des Liquid Cooling Package zwischen den beiden Wandblechen montiert. An der Luftaustrittsseite ist der Wärmetauscher bei den CWG-Geräten (3314.250/550/ 570) mit einem Tropfenabscheider abgedeckt, der evtl. anfallendes Kondensat auffängt und in die Bodenwanne unten im Liquid Cooling Package ableitet. Vor und nach dem Wärmeübertrager befinden sich jeweils 3 Temperatursensoren, die die Kalt- und Warmlufttemperatur ermitteln und an die Regelung weitergeben.

3.5.4 Lüftermodul

- З Erdungsverbindung
- 4 Anschlussstecker AC
- 5 Lüftertür
- 6 Handgriff

Ein Lüftermodul besteht im Wesentlichen aus dem eigentlichen Lüfter. Alle Lüftermodule werden über eine gemeinsame Regeleinheit (RLCP-Fan) geregelt, die im oberen Bereich des Liquid Cooling Package montiert ist. Die Lüfter können stufenlos von 10 % - 100 % betrieben werden.

Die Lüftermodule sind im vorderen Teil des Liquid Cooling Package auf Einschubböden montiert. An der Unterseite des Lüfters werden die beiden Anschlusskabel für die Spannungsversorgung und die Steuerleitung herausgeführt. Die Ansaugseite des Lüftermoduls legt sich bei allen LCP CW- und LCP CWG-Geräten links und rechts gegen ein Dichtprofil, das am Gehäuse angebracht ist, an und dichtet somit ab. Dadurch sind die Lüfter im eingebauten Zustand direkt mit dem Luft/Wasser-Wärmetauscher des Geräts verbunden und ermöglichen somit eine störungsfreie und direkte Führung der Luft vom Luft/Wasser-Wärmetauscher zum Lüftermodul.

Die Austauschzeit für ein einzelnes Lüftermodul beträgt im laufenden Betrieb ca. 2 Minuten (vgl. Abschnitt 5.3 "Lüftermontage").

3.5.5 Wassermodul mit Kaltwasseranschluss

Wesentlicher Bestandteil des Wassermoduls ist die Bodenwanne aus Edelstahl, in der ein Leckagesensor, ein Wasserablauf und ein Notüberlauf angeordnet sind.

Die Bodenwanne ist zusätzlich zum Leckagesensor mit einem drucklosen Kondensatablauf ausgestattet. Dieser leitet das Kondensat nach hinten aus dem Liquid Cooling Package heraus. Der Schlauch muss an einen externen Ablauf angeschlossen werden (vgl. Abschnitt 6.1.4 "Kondensatablauf anschließen").

Oberhalb der Bodenwanne verlaufen die Rohrleitungen für den Kühlwasseranschluss (Vor- und Rücklauf) des Liquid Cooling Package.

Die Leitungen verbinden den rückseitig angeordneten Kühlwasseranschluss mit dem mittig im Gerät eingebauten Luft/Wasser-Wärmetauscher. Zur Vermeidung von Kondensatbildung sind die Leitungen isoliert. In der Leitung des Kühlwasservorlaufs ist ein motorisch betriebener Regelkugelhahn angeordnet, mit dem der Kühlwasserdurchfluss gesteuert werden kann.

Der Kühlwasseranschluss erfolgt über zwei G11/2"-Rohr-Außengewinde für Flachdichtverschraubungen an den Hauptanschlüssen von Vor- und Rücklauf. Die Anschlussstutzen sind horizontal, schräg nach hinten angeordnet.

Der Kühlwasseranschluss an das Kaltwassernetz kann wahlweise mit Hilfe einer starren Verrohrung oder über flexible Schläuche erfolgen, die im Rittal Zubehör erhältlich sind (Best.-Nr. 3311.040).

3.6 Bestimmungsgemäße und nicht bestimmungsgemäße Verwendung

Das Liquid Cooling Package ist ein Luft-/Wasser-Wärmetauscher und dient zur Kühlung von abgeschlossenen Räumen oder Gehäusen, in die IT-Komponenten wie Server. Switches oder Ähnliches eingebaut sind und die als Technikraum oder Rechenzentrum genutzt werden.

LCPs sind immer in Verbindung mit einer Kaltwasserversorgung, typischerweise Chiller oder Freikühler, zu verwenden. Die Wasserversorgung muss in jedem Fall ein geschlossener Kreislauf sein. Die Wasserqualität muss während der gesamten Betriebsdauer gemäß der Angaben in dieser Anleitung ausgeführt sein.

Das Gerät darf nur innerhalb der technischen Betriebsgrenzen, die in dieser Anleitung beschrieben sind, eingesetzt werden.

Das Gerät ist nach dem Stand der Technik und den anerkannten sicherheitstechnischen Regeln gebaut. Dennoch können bei nicht ordnungsgemäßer Verwendung Gefahren für Leib und Leben des Benutzers oder Dritter bzw. Beeinträchtigungen der Anlage und anderer Sachwerte entstehen.

Das Gerät ist daher nur bestimmungsgemäß in technisch einwandfreiem Zustand zu benutzen!

Störungen, die die Sicherheit beeinträchtigen können, sollten Sie umgehend beseitigen (lassen)! Betriebsanleitung beachten!

Zur bestimmungsgemäßen Verwendung gehören auch das Beachten der Betriebsanleitung und die Einhaltung der Inspektions- und Wartungsbedingungen.

Bei nicht bestimmungsgemäßem Gebrauch können Gefahren auftreten. Solch nicht bestimmungsgemäßer Gebrauch kann z. B. sein:

- Verwendung von unzulässigen Werkzeugen.
- Unsachgemäße Bedienung.
- Unsachgemäße Behebung von Störungen.
- Verwendung von nicht durch Rittal GmbH & Co. KG freigegebener Ersatzteile.
- Nichtbeachten der nötigen Wasserqualität.
- Bei den CW-Geräten: Verwendung eines anderen Kühlmittels als Wasser.
- Ausblasen der Kaltluft in ein Luftkanalsystem.
- Einsatz in industrieller Umgebung.
- Nicht-stationärer Einsatz, z. B. an beweglichen bzw. nicht erschütterungsfreien Maschinen.
- Dauerhafter Betrieb unterhalb des Taupunkts (ausgenommen die CWG-Geräte mit Prallflächen-Tropfenabscheider).
- Betrieb als Luftkonditionierung für den Menschen.
- Betrieb als Lebensmittelkühlung.
- Einbringung der Geräte in öffentlich zugänglichen Bereichen.
- Verletzung der zulässigen elektrischen Spannungsbereiche.

3.7 Lieferumfang Liquid Cooling Package

Der Lieferumfang eines Liquid Cooling Package umfasst:

Anzahl	Lieferteile
1	Liquid Cooling Package, anschlussfertig
	Zubehör:
1	Entlüftungsschlauch
1	Anschlussstecker, 5-polig (Spannungsversor- gung)
1	Anschlussstecker, 7-polig (Störmeldung, 2 x digitaler Eingang)
2	Kabelbinder mit Spreizanker (Zugentlastung für Anschlusskabel)
2	Brücke für Anschlussstecker, 5-polig (Nutzung bei 1~ Betrieb)
1	Anreihungbefestigerkit für VX IT (nur bei LCP Inline)
1	Vierkant Entlüftungsschlüssel

 Anzahl
 Lieferteile

 2
 Verschlussstopfen

 1
 Schaumgummi für 1200 mm tiefe LCP

 1
 Schaumgummi für 1000 mm tiefe LCP (nicht bei LCP Inline Protruding)

 1
 Montage-, Installations- und Bedienungsanleitung

Tab. 3: Lieferumfang eines Liquid Cooling Package

3.8 Gerätespezifische Hinweise

3.8.1 Bildung von Redundanzen beim LCP Rack

Durch die vorher beschriebenen Möglichkeiten der Anreihung können sehr einfach Redundanzen der Kühlung erzielt werden. Die Trennung von Serverschrank und Liquid Cooling Package ermöglicht es, verschiedene Abstufungen von Redundanzen aufzubauen.

Abb. 17: Redundante oder doppelte Kühlung mit zwei LCP Rack

Legende

- 1 LCP Rack
- 2 Serverschrank
- 3 Vorlauf Kaltwassersystem
- 4 Rücklauf Kaltwassersystem

Zwei Serverschränke können mit Hilfe von 3 LCP Rack gekühlt werden. In Abhängigkeit von der Kühlleistung bildet das in der Mitte zwischen den Serverschränken eingereihte Gerät die Redundanz für den jeweils rechten und linken Serverschrank.

Tab. 3: Lieferumfang eines Liquid Cooling Package

Abb. 18: Redundante Kühlung mit drei LCP Rack

Legende

- 1 LCP Rack
- 2 Serverschrank
- 3 Vorlauf Kaltwassersystem
- 4 Rücklauf Kaltwassersystem

6

Abb. 19: Redundante Kühlung und doppelte, abwechselnde Wasserversorgung

Legende

- 1 LCP Rack
- 2 Serverschrank
- 3 Vorlauf Kaltwassersystem 1
- 4 Rücklauf Kaltwassersystem 1
- 5 Vorlauf Kaltwassersystem 2

Rücklauf Kaltwassersystem 2

3.8.2 Taupunktregelung

Bei den CWG-Geräten ist werkseitig bereits eine Taupunktregelung installiert.

Hinweis:

Die Taupunktregelung kann werkseitig bei jedem Gerätetyp eingebaut werden. Kontaktieren Sie den Rittal Vertrieb!

Diese Regelung (vgl. Abschnitt 8.5.12 "Features") ist abhängig von den Komponenten und den Einstellungen der gesamten Anlage und ist dadurch von Fall zu Fall unterschiedlich. Ist ein Kühlgerät vorhanden, das die Luftfeuchtigkeit des Raumes bereits kontrolliert, ist in den meisten Fällen keine weitere Taupunktregelung notwendig, da dieses Kühlgerät die Feuchtigkeit nach den Empfehlungen des ASHRAE-Standards "ASHRAE TC 9.9, 2011 Thermal Guidelines for Data Processing Environments" bereits regelt. Soll die Taupunktregelung durch das LCP CW/LCP CWG selbst erfolgen, stehen 2 Regelungsarten bei gleichem zusätzlichen Installationsumfang zur Verfügung.

3.9 Typenschlüssel

3.9.1 Bedeutung der Stellen im Typenschlüssel

Pos. 1-3	Erläuterung
LCP	Liquid cooling package

Tab. 4: Gerätename

Pos. 4	Erläuterung
G	Globale Version (200240 V~ und 346415 V 3N~)
Ν	NSA-Version (200240 V~ und Einpha- sen-Dreileiter)

Tab. 5: Gebietsversion

Pos. 5	Erläuterung
8	BestNr. 3314.XXX

Tab. 6: Gerätegeneration

Pos. 6	Erläuterung
А	Chilled water (CW) / Chilled Water Glycole (CWG)

Tab. 7: Kühlmittelkreislauf

Pos. 7	Erläuterung
1	30 kW

Tab. 8: Leistungsklasse

Pos. 7	Erläuterung
2	45 kW
3	55 kW

Tab. 8: Leistungsklasse

Pos. 8	Erläuterung
R	Rack (geschlossene Türen, Luftein- und -auslass links und rechts)
I	Inline flush (perforierte Front- und Rücktür, Luftein- und -auslass durch die Türen)
Ρ	Inline protruding (geschlossene Fronttür und perforierte Rücktür, Lufteinlass durch Rücktür, Luftauslass links und rechts)
М	Gemischte Lösung 1 flush (perforierte Fronttür und geschlossene Rücktür, Lufteinlass links und rechts, Luftauslass durch Fronttür)
N	Gemischte Lösung 2 flush (geschlossene Fronttür und perforierte Rücktür, Luftein- lass durch Rücktür, Luftauslass links und rechts)

Tab. 9: Anwendungstyp

Pos. 9	Erläuterung
1	1 Lüfter
2	2 Lüfter
3	3 Lüfter
4	4 Lüfter
5	5 Lüfter
6	6 Lüfter

Tab. 10: Anzahl montierte Lüfternmodule

Pos. 10	Erläuterung
3	Schrankbreite 300 mm

Tab. 11: Schrankbreite

Pos. 11	Erläuterung
S	Standardhöhe 2000 mm
В	Option spezieller Sockel und Tür für größe- re Schrankhöhe
Х	Spezialhöhe < 2000 mm (auf Anfrage)

Tab. 12: Schrankhöhe

Pos. 12	Erläuterung
А	1000 mm
В	1050 mm
С	1200 mm
Х	Spezialtiefe (auf Anfrage)

Best.-Nr. Typenschlüssel LCP G 8 A 1 I 2 3 S C 7 0 0 0 0 3314.540 3314.542 LCPG8A1I23BC70000 3314.530 LCPG8A1P13SC70000 3314.250 LCP G 8 A 2 R 4 3 S C 7 0 0 C 0 3314.550 LCPG8A2123SC700C0 3314.570 LCPG8A2P43SC700C0 3314.260 LCPG8A3R43SC70000 3314.560 LCP G 8 A 3 P 4 3 S C 7 0 0 0 0

Tab. 13: Schranktiefe

Pos. 13	Erläuterung
7	RAL 7035
9	RAL 9005
Х	Sonderfarbe/Sonderbeschichtung (auf An- frage)

Tab. 19: Typenschlüssel der Standardgeräte

Tab. 14: Schrankfarbe

Pos. 14	Erläuterung
0	Kein Display (Standard)
D	Fronttür mit Display

Tab. 15: Option "Display"

Pos. 15	Erläuterung
0	Keine Kondensatpumpe (Standard)
С	Kondensatpumpe

Tab. 16: Option "Kondensatpumpe"

Pos. 16	Erläuterung
0	Kein Kondensatmanagement
С	Kondensatmanagement (Tropfenabschei- der, Taupunktsensor)

Tab. 17: Option "Kondensatmanagement"

Pos. 17	Erläuterung
0	Nichteisenmetall (Standard)
1	Rostfreier Stahl

Tab. 18: Option "Kühlmittelkreislauf aus rostfreiem Stahl"

3.9.2 Standardgeräte

BestNr.	Typenschlüssel
3314.130	LCP G 8 A 1 R 1 3 S A 7 0 0 0 0
3314.230	LCP G 8 A 1 R 1 3 S C 7 0 0 0 0

Tab. 19: Typenschlüssel der Standardgeräte

4 Transport und Handhabung

Vorsicht!

Verletzungsgefahr bei Transport und Handhabung des Geräts. Tragen Sie für die im Folgenden beschriebenen Arbeiten die persönliche Schutzausrüstung.

4.1 Transport

Das Liquid Cooling Package wird auf einer Palette in Folie eingeschweißt geliefert.

Vorsicht!

Das Liquid Cooling Package neigt auf Grund seiner Höhe und seiner schmalen Standfläche zum Kippen. Gefahr des Umfallens, insbesondere, nachdem das Gerät von der Palette genommen wurde!

Vorsicht!

Transport des Liquid Cooling Package: Nur geeignete und technisch einwandfreie Hebezeuge sowie Lastaufnahmemittel mit ausreichender Tragkraft verwenden!

Versuchen Sie aufgrund des hohen Gewichts niemals das Liquid Cooling Package allein oder mit mehreren Personen anzuheben. Verwenden Sie hierzu immer geeignete Hebezeuge.

4.2 Auspacken

- Entfernen Sie die Verpackung des Gerätes. Beachten Sie, dass die Kunststoffbänder vorgespannt sind und daher beim Durchtrennen eine gewisse Verletzungsgefahr besteht.
- Prüfen Sie das Gerät auf Transportschäden.

____ Hinweis:

Schäden und sonstige Mängel, z. B. Unvollständigkeit, sind der Spedition und der Fa. Rittal GmbH & Co.KG unverzüglich schriftlich mitzuteilen.

Geräteausführungen außer 3314.542

- Öffnen Sie die Rücktür mithilfe des am Gerät befindlichen Schlüssels.
- Entfernen Sie vorne und hinten die Befestigungsschrauben, mit denen das Gerät auf der Palette befestigt ist.

Abb. 20: Befestigung vorne (2 x Schrauben)

Legende

- 1 Liquid Cooling Package
- 2 Befestigungsschrauben
- 3 Palette

4 Transport und Handhabung

Abb. 21: Transportbefestigung hinten (2 x Schrauben)

Legende

- 1 Befestigungsschraube
- 2 Befestigungsschraube
- 3 Palette

Abb. 22: Demontage Lüfterstecker vorne im LCP

Legende

- 1 Befestigungsschrauben
- 2 Lüfterstecker mit Halterung
- Demontieren Sie den Lüfterstecker, um die Transportbefestigungsschrauben vorne lösen zu können (ausgenommen Geräte vom Typ "Flush").

Abb. 23: Transportbefestigungsschrauben entfernen

Legende

1 Schrauben Torx 30

Abb. 24: Verschlussstopfen zum Verschließen der Transportbefestigungsöffnungen

Legende

- 1 Verschlussstopfen
- Verschließen Sie die Transportbefestigungsöffnungen vorne mit den Verschlussstopfen aus dem Versandbeutel.
- Montieren Sie den Lüfterstecker und die zugehörige Halterung wieder.

Geräteausführung 3314.542

Lösen Sie die Befestigungsschrauben, mit denen das Abdeckblech vorne im unteren Bereich des Geräts fixiert ist.

Abb. 25: Befestigung Abdeckblech (6 x Schrauben)

Legende

- 1 Liquid Cooling Package
- 2 Befestigungsschrauben (6x)
- 3 Abdeckblech
- 4 Palette
- Entnehmen Sie die Befestigungsschrauben sowie das Abdeckblech.

4 Transport und Handhabung

Abb. 26: Entnehmen des Abdeckblechs

Entfernen Sie die beiden Befestigungsschrauben, mit denen das Gerät vorne auf der Palette befestigt ist.

Abb. 27: Befestigung vorne (2 x Schrauben)

Legende

- 1 Liquid Cooling Package
- 2 Befestigungsschrauben (2x)
- 3 Palette
- Bringen Sie das Abdeckblech wieder mit den Befestigungsschrauben am LCP an.
- Öffnen Sie die Fronttür mithilfe des am Gerät befindlichen Schlüssels.
- Entfernen Sie die beiden Befestigungsschrauben, mit denen das Gerät hinten auf der Palette befestigt ist.

Abb. 28: Transportbefestigung hinten (2 x Schrauben)

Legende

- 1 Liquid Cooling Package
- 2 Befestigungsschrauben (2x)
- 3 Palette

Unabhängig von der Geräteausführung

■ Stellen Sie das Gerät an den vorgesehenen Ort.

___ Hinweis:

 Die Verpackung muss nach dem Auspacken umweltgerecht entsorgt werden. Sie besteht aus folgenden Materialien:
 Holz, Poly-Ethylen-Folie (PE-Folie), Umreifungsband, Kantenschutzleisten, Wellpappe.

5.1 Allgemeines

5.1.1 Anforderungen an den Aufstellort

Bei den LCPs handelt es sich um Luft/Wasser Wärmetauscher für IT-Equipment.

Beachten Sie folgende generelle Hinweise zum Aufstellort:

- Der Aufstellort der LCPs muss vor äußeren Wettereinflüssen geschützt sein.
- Der Aufstellraum ist abzudichten, um einen unkontrollierten Luftaustausch mit der Umgebung zu vermeiden.
- Die Frischluftzufuhr ist auf ein Mindestmaß zu reduzieren, jedoch sind hierbei die anerkannten Regeln der Technik zu beachten.
- Wird die Zuluft des Aufstellraumes über eine RLT-Anlage konditioniert, ist darauf zu achten, dass die relative Luftfeuchte auf die Wasservorlauftemperatur der LCPs abgestimmt ist. So wird Kondensation vermieden und die größtmögliche Energieeffizienz gewährleistet (vgl. Abschnitt 3.3 "Luftkonditionen").
- Das Gerät darf nicht an Orten aufgestellt und betrieben werden, die der allgemeinen Öffentlichkeit zugänglich sind. Der Zugang zum Aufstellort darf nur entsprechend autorisiertem Personal möglich sein.

Um eine einwandfreie Funktion des Liquid Cooling Package zu gewährleisten, sind nachfolgend genannte Bedingungen für den Standplatz des Geräts zu beachten:

Bauseitig erforderliche Versorgungsanschlüsse pro Liquid Cooling Package

Anschlussart	Anschlussbeschreibung	
Stromanschluss:	200240 V, 1~, N, PE, 50/60 Hz 346415 V, 3~, N, PE, 50/60 Hz Leitungsschutz gemäß der techni- schen Daten (vgl. Abschnitt 13 "Technische Daten").	
Kälteträgeranschluss:	Max. zulässiger Betriebsdruck PS = 10 bar	

Tab. 20: Bauseitig erforderliche Versorgungsanschlüsse

Hinweis:

Beachten Sie beim Kaltwasseranschluss auch die Hinweise und Angaben im Abschnitt 6.1.3 "Kühlwasseranschluss" und im Abschnitt 16.1 "Informationen zum Füll- und Ergänzungswasser".

Empfehlung:

Um die Servicefreundlichkeit des Liquid Cooling Package zu gewährleisten, muss der Abstand von der Vorder- und der Rückseite des Gerätes zur nächsten Wand mindestens 1 m betragen.

Bodenbeschaffenheit

- Die Aufstellfläche sollte eigensteif, eben und trocken sein.
- Wählen Sie den Aufstellungsort so, dass das Gerät nicht auf einer Stufe, Unebenheit o.ä. steht.

Abb. 29: LCP CW Rückansicht – Raum zur Einführung der Anschlussschläuche

Legende

Gummiklemmprofil

Hinweis:

Das Gummiklemmprofil liegt im Versandbeutel bei. Nach der Herstellung des Anschlusses muss dieses Gummiklemmprofil zur Luftabschottung nach unten installiert werden.

Klimatische Bedingungen

Gemäß der technischen Daten (vgl. Abschnitt 13 "Technische Daten").

___ Empfehlung:

Raumtemperatur +22 °C bei 50 % relativer Luftfeuchtigkeit, gemäß ASHRAE-Richtlinie.

5.1.2 Aufstellraum vorbereiten für LCP Inline Protruding und LCP Inline Flush

Der Aufstellraum des LCP Inline Protruding sowie des LCP Inline Flush muss in einen Kalt- und einen Warmluftbereich unterteilt werden. Hierdurch wird sichergestellt, dass kein Kühlleistungsverlust durch Vermischung von Warm- und Kaltluft erfolgt.

Abb. 30: Elektronikmodul im LCP

Legende

- 1 Elektronikmodul
- 2 Befestigungsschrauben

Eine Gangschottung kann problemlos oberhalb des LCP montiert werden, da das Elektronikmodul nach dem Lösen aller Steckverbinder und den zwei Befestigungsschrauben nach vorne aus dem Gerät herausgezogen werden kann.

Legende

- 1 LCP Inline Protruding
- 2 Warmgang
- 3 Kaltgang
- 4 LCP Inline Flush

_ Hinweis:

Im Rittal Zubehör finden Sie alle notwendigen Bauteile zum Aufbau einer entsprechenden Kaltgang-Schottung.

5.1.3 Aufstellregeln für LCP Inline Protruding und LCP Inline Flush

Bereits bei der Planung muss der Aufstellort in den Schrankreihen berücksichtigt werden. Dabei sind u. A. folgende Punkte grundsätzlich zu beachten:

- Verlustleistung in den umliegenden Serverschränken
- Luftvolumenströme in den umliegenden Serverschränken
- Entfernungen zu den umliegenden Serverschränken

Verlustleistungen in den umliegenden Serverschränken

Wird das LCP Inline Protruding bzw. das LCP Inline Flush in Verbindung mit Serverschränken mit hohen Verlustleistungen eingesetzt, muss die Anzahl der eingesetzten LCP Inline Protruding bzw. LCP Inline Flush entsprechend mit den Kennlinien abgeglichen werden (vgl. Abschnitt 6.2 "Kühlbetrieb und Regelverhalten"). Dabei ist vor allem auf die luftseitige Temperaturdifferenz zwischen Servereintritt und Serveraustritt, die durch das in den Serverschränken eingesetzte Equipment vorgegeben wird, zu achten. Als Faustregel ist mit einer Temperaturdifferenz von 15 K zu rechnen, jedoch sind hier auch höhere oder niedrigere Temperaturdifferenzen möglich.

Luftvolumenströme in den umliegenden Serverschränken

Durch die Abschottung von Warm- und Kaltbereich muss darauf geachtet werden, dass das LCP Inline Protruding bzw. das LCP Inline Flush ausreichend gekühlte Luft in den Kaltbereich liefern kann. Von dort wird die Kaltluft vom Equipment in den Serverschränken wieder angesaugt. Grundsätzlich sollte ein geringer Luftüberschuss bereitgestellt werden, um eventuell kurzzeitig mehr geförderte Luft des Equipments zu kompensieren.

Entfernungen zu den umliegenden Serverschränken

Bei einer strikten und genauen Abschottung des Warmund Kaltbereichs und der Einhaltung der oben genannten Punkte haben bei kleineren Anwendungen bzw. Schrankreihenlängen Entfernungen weniger Einfluss auf das Verhalten bzw. die Kühlleistung. Bei größeren Anwendungen mit großer Schrankreihenlänge ist jedoch aufgrund von Verlusten im Luftvolumenstrom durch äu-Bere Druckverluste und aufgrund von Konvektion bzw. Strahlungswärme des Equipments eine gleichmäßige Aufstellung einzuhalten. Weitere Einflüsse können auch durch angrenzende Räume mit hoher Temperatur, deren Wände an den Kaltbereich grenzen, oder Außen5

wände, die durch Sonneneinstrahlung höhere Temperaturen aufweisen können, auftreten.

Generell müssen zwischen den LCP-Geräten bzw. vom ersten LCP-Gerät zur Wand der Gangschottung vorgegebene Mindest- bzw. Maximalabstände eingehalten werden.

Abstände	minimal [m]	maximal [m]
LCP – Außenwand Abb. 32, Pos. 1	0,6	1,6
LCP – LCP Abb. 32, Pos. 2	1,2	3,2
seitlicher Versatz Abb. 32, Pos. 3	0,3	_

IT-Rack IT-Rac

Tab. 21: Mindest- und Maximalabstände

Abb. 32: Mindest- und Maximalabstände

Legende

- 1 Abstand LCP Außenwand
- 2 Abstand LCP LCP
- 3 Seitlicher Versatz gegenüberliegender LCP

Empfehlung:

Bei erhöhten Anforderungen an die Fluchtwegsplanung, sollten die Geräte nicht direkt gegenüber aufgestellt werden. – Hinweis:

Zur vollständigen Entfernung eines LCP aus einer Schrankreihe muss der benötigte Platz bei der Dimensionierung des Kalt-/Warmgangs berücksichtigt werden.

Druck innerhalb der Kaltgangschottung

Bei Einsatz eines LCP Inline Protruding bzw. LCP Inline Flush herrscht im Kaltgang ein Überdruck gegenüber dem Außenraum (Warmgang). Je nach eingesetztem IT-Equipment kann der Druck im Kaltgang aber auch schwanken.

5.2 Montageablauf mit einem VX IT Serverschrank

_ Hinweis:

Bei anderen Schränken gehen Sie sinngemäß und entsprechend der Anweisungen der Anleitung der Schränke vor.

5.2.1 Allgemeines

Bevor das Liquid Cooling Package an einen Serverschrank angereiht werden kann, sind am Serverschrank folgende Arbeiten auszuführen:

- Seitenwände abbauen,
- Serverschrank abdichten und
- Serverschranktür ausbauen (bei geschlossener Sichttür).

5.2.2 Seitenwände abbauen

Vorsicht! Verletzungsgefahr! Die Seitenwandhalter sind mit scharfkantigen Verzahnungen versehen, die eine Erdung der Seitenwand des Serverschranks ermöglichen.

Falls auf der Seite des Serverschranks, an der das Liquid Cooling Package angereiht werden soll, eine Seitenwand bzw. Schottwand montiert ist, muss diese zunächst abgebaut werden.

- Lösen Sie die 8 Befestigungsschrauben an jeder Seitenwand des Serverschranks und nehmen Sie sie ab.
- Entfernen Sie alle Seitenwandbefestigungselemente auf der Seite des Serverschranks, auf der das Liquid Cooling Package angereiht werden soll.
- Lösen Sie die beiden Seitenwandaufhängungen von der oberen Montageleiste des Serverschranks. Verwenden Sie dazu ein geeignetes Hebelwerkzeug.
- Lösen Sie die Schrauben an den beiden Seitenwandbefestigungswinkeln (oben und unten) in der Mitte der Montageleiste und entfernen Sie diese.
- Lösen Sie die Schrauben der 6 Seitenwandhalter an den seitlichen Montageleisten und entfernen Sie diese.

5.2.3 Serverschrank abdichten

Vorsicht! Verletzungsgefahr! Beim Ablängen der Schaumstoffstreifen besteht Schnittgefahr. Tragen Sie die persönliche Schutzausrüstung!

Um die gezielte Luftführung im System sicherzustellen, ist der Serverschrank vertikal durch das Abdichten der 19"-Ebene in einen Warmluft- und einen Kaltluftbereich zu unterteilen.

Gehen Sie zum Abdichten der 19"-Ebene folgendermaßen vor:

Verschließen Sie bei einem teilbestückten Serverschrank die offenen Bereiche der 19"-Ebene mit Hilfe von Blindplatten. Schrauben Sie diese von der Vorderseite auf dem Serverrack fest.

Hinweis:

- Blindplatten in verschiedenen Höheneinheiten (HE) sowie schmale und breite Schaumstoffstreifen und Luftleitbleche sind im Rittal Zubehör (vgl. Abschnitt 15 "Zubehör") erhältlich.
- Befestigen Sie den breiteren der beiden Schaumstoffstreifen (Best.-Nr. 3301.370 / 3301.320) aus dem Zubehör des Liquid Cooling Package von außen an einer der vorderen Stützen des Serverracks. Achten Sie darauf, dass Sie diesen Streifen auf der Seite des Serverschranks anbringen, auf der das Liquid Cooling Package angereiht wird.
- Wenn Sie das Liquid Cooling Package nur an einer Seite anreihen: Befestigen Sie den schmaleren (Best.-Nr. 3301.380 / 3301.390) der beiden Schaumstoffstreifen aus dem Zubehör des Liquid Cooling Package von außen an einer der vorderen Stützen des Serverracks. Achten Sie darauf, dass Sie diesen Streifen auf der Seite des Serverschranks anbringen, auf der der Schrank wieder mit einer Seitenwand verschlossen wird.

Sind im Serverschrank auch Geräte eingebaut, die zur Kühlung von der Seite durchströmt werden (z. B. Switches, Router, etc.), müssen für deren Belüftung Aussparungen in den Schaumstoffstreifen eingebracht werden:

- Schneiden Sie hierzu mit einem scharfen Messer ein Stück aus dem Schaumstoffstreifen heraus.
- Sind im Serverschrank mehrere seitlich durchströmte Geräte eingebaut, schneiden Sie entsprechend mehrere Stücke aus dem Schaumstoffstreifen heraus, so dass sich schließlich auf der Höhe jedes seitlich durchströmten Geräts links oder rechts am Serverrack eine Aussparung im Schaumstoffstreifen befindet. Achten Sie darauf, dass sich auf der Warmluftseite der Geräte keine Aussparungen befinden (Abb. 33, Pos. 3).
- Schneiden Sie mit einem scharfen Messer weitere Stücke aus dem Schaumstoffstreifen heraus, deren

Länge min. der Höhe der eingebauten Geräte entspricht.

Befestigen Sie diese Schaumstoffstreifen nach hinten versetzt auf der Kaltluftseite der Geräte (Abb. 33, Pos. 4). Achten Sie darauf, die Streifen so anzubringen, dass alle in den Geräten verbauten Lüfter Kaltluft ansaugen können bzw. dass keiner der Lüfter verschlossen wird.

Hinweis:

Die Schaumstoffstreifen können zwischen der vorderen und hinteren Stütze des Serverrack über die gesamte Tiefe an den seitlich durchströmten Geräten angebracht werden (Abb. 33).

5

Abb. 33: Anordnung der Schaumstoffstreifen bei seitlich durchströmten Geräten (Draufsicht) – LCP Rack

Legende

- 1 LCP Rack
- 2 Serverschrank
- 3 Schaumstoffstreifen auf der Warmluftseite
- 4 Schaumstoffstreifen auf der Kaltluftseite
- Schneiden Sie die evtl. überstehende Länge des Schaumstoffstreifens am Serverrack an der Oberkante des Racks ab.

Hinweis:

Das Liquid Cooling Package kann wahlweise an einen Serverschrank mit 600 mm oder mit 800 mm Breite angereiht werden, daher sind im Zubehör des Liquid Cooling Package insgesamt vier Schaumstoffstreifen bzw. entsprechende Luftleitbleche mit unterschiedlichen Abmessungen erhältlich (vgl. Abschnitt 15 "Zubehör").

- Hängen Sie eine Seitenwand an den beiden Seitenwandaufhängungen auf der dem Liquid Cooling Package abgewandten Seite am Serverschrank ein und richten Sie sie zur Vorder- und Rückseite des Schranks aus.
- Schrauben Sie die Seitenwand mit 8 Befestigungsschrauben an den Seitenwandhaltern und den Seitenwandbefestigungswinkeln fest.
- Dichten Sie evtl. vorhandene Kabeleinführungen mit enstprechenden Bürstenleisten o.ä. ab.

5.2.4 Rückseitigen Adapter am LCP Inline montieren

Um auf der Rückseite einen gleichmäßigen Abschluss der Fronten des LCP Inline und der Serverschränke zu erzielen, kann am LCP Inline eine entsprechende Schrankverlängerung installiert werden (vgl. Abschnitt 15 "Zubehör").

- Rückseitige Tür am LCP Inline demontieren analog wie am Serverschrank.
- Scharnierbolzenaufnahmen (Abb. 34, Pos. 1) sowie zugehörige Verschlussteile (Abb. 34, Pos. 2) am LCP Inline demontieren und analog hinten am Adapter wieder montieren.

Abb. 34: Befestigungselemente am Liquid Cooling Package – Rückansicht

Legende

- 1 Scharnierbolzenaufnahme
- 2 Verschlussteil

Adapter (Abb. 35, Pos. 2) an der rückseitigen Öffnung des LCP Inline mit jeweils vier der beigelegten Schrauben (Abb. 35, Pos. 1) links und rechts befestigen.

Abb. 35: Adapter am LCP Inline

Legende

- 1 LCP Inline
- 2 Adapterrahmen

— Hinweis:

Die Schrauben zur Befestigung des Adapters werden an der Innenseite verschraubt.

Abb. 36: Befestigung Adapterrahmen

Legende

- 1 Befestigungsschrauben
- Tür hinten am Adapter montieren, wenn Sie das LCP Inline mit Hilfe von Anreihzwingen am Serverschrank befestigen.

Abb. 37: Montage Dachblech Adapterrahmen

Legende

- 1 Dachblech
- 2 Befestigungsschrauben

Hinweis:

Falls Sie das LCP Inline mit Hilfe von Anreihverbindern am Serverschrank befestigen, montieren Sie die rückwärtige Tür jetzt noch nicht. 5.2.5 Aufstellen und Anreihen des Liquid Cooling Package

Vorsicht!

Das Liquid Cooling Package neigt auf Grund seiner Höhe und seiner schmalen Standfläche zum Kippen. Gefahr des Umfallens, solange es noch nicht angereiht ist!

- Stellen Sie das Liquid Cooling Package an die Seite neben den Serverschrank, an den es angereiht werden soll.
- Ziehen Sie das LCP Inline so weit nach vorne, bis die seitlichen Luftaustrittsöffnungen des LCP Inline vollständig vor der Vorderkante des Serverschranks liegen.
- Richten Sie das Liquid Cooling Package zum Serverschrank aus. Achten Sie darauf, dass das Liquid Cooling Package waagerecht ausgerichtet ist und dass beide Schränke auf die gleiche Höhe und senkrecht zueinander justiert sind.
- Bauen Sie die Tür des Liquid Cooling Package aus, deren Scharniere sich auf der Seite befinden, an der der Serverschrank angereiht werden soll.

_ Hinweis:

Wird das Liquid Cooling Package zwischen zwei Serverschränken eingereiht, müssen vor dem Anbringen der Anreihverbinder beide Türen des Liquid Cooling Package ausgebaut werden, damit die Befestigungspunkte für die Anreihverbinder zugänglich sind.

Befestigung LCP Rack sowie des LCP Inline Flush

Befestigen Sie je zwei Anreihverbinder (5301.310, Abb. 38, Pos. 2) mit den zugehörigen Befestigungsschrauben an den vorgesehenen Befestigungspunkten in den Montageleisten auf der Vorder- und Rückseite des LCP Rack bzw. des LCP Inline Flush (Abb. 38, Pos. 1).

, Hinweis:

Beim Anreihen entsteht ein Anreihspalt von 3 mm zwischen den Schränken.

Abb. 38: LCP Rack – Rückseite

Legende

- LCP Rack 1
- Anreihverbinder 2
- Befestigen Sie die Anreihverbinder analog an den vorgesehenen Befestigungspunkten in den Montageleisten auf der Vorder- und Rückseite des Serverschranks. Drücken Sie u. U. das LCP Rack bzw. das LCP Inline Flush leicht gegen den Serverschrank, um die Anreihverbinder mit den Befestigungspunkten zur Deckung zu bringen.

Befestigung LCP Inline Protruding

Zur Befestigung des LCP Inline Protruding an einem Serverschrank befindet sich im Lieferumfang ein Anreihungsbefestigungskit.

- Demontieren Sie vor dem Anreihen des LCP Inline Protruding eine evtl. am Serverschrank vorhandene Schott- oder Seitenwand.
- Montieren Sie ebenfalls vor dem Anreihen die f
 ür das Verbindungselement benötigte Lasche (Abb. 39, Pos. 1) am Serverschrank VX IT.

Nach dem Anreihen ist das Montieren dieser Lasche nicht mehr möglich.

Setzen Sie dann im hinteren Bereich ein Verbindungselement (Abb. 39, Pos. 2) zwischen die Rahmen des LCP Inline Protruding und des Serverschranks ein.

Abb. 39: Verbindungselement im hinteren Bereich VX/VX

Legende

- Lasche am Serverschrank VX IT 1
- 2 Verbindungselement
- З LCP Inline Protruding
- 4 Serverschrank VX IT

Hinweis:

Die zur Anreihung eines LCP Inline Protruding an einem TS IT Serverschrank benötigten Teile sind im Rittal Zubehör erhältlich (vgl. Abschnitt 15 "Zubehör").

Abb. 40: Verbindungselement im hinteren Bereich VX/TS

Legende

- LCP Inline Protrudina 1
- Verbindungselement 2
- 3 Serverschrank TS IT
- Befestigen Sie das LCP Inline Protruding im vorderen Bereich oben und unten jeweils mit einem Winkel und Schrauben am Serverschrank.

Abb. 41: Winkel und Schrauben im vorderen Bereich VX/VX

Legende

- 1 LCP Inline Protruding
- 2 Serverschrank VX IT
- 3 Winkel
- 4 Befestigungsschraube Winkel am Serverschrank VX IT
- 5 Befestigungsschraube LCP Inline Protruding

Hinweis:

Die zur Anreihung eines LCP Inline Protruding an einem TS IT Serverschrank benötigten Teile sind im Rittal Zubehör erhältlich (vgl. Abschnitt 15 "Zubehör").

Abb. 42: Winkel und Schrauben im vorderen Bereich VX/TS

Legende

- 1 LCP Inline Protruding
- 2 Serverschrank TS IT
- 3 Winkel
- 4 Befestigungsschraube Winkel am Serverschrank TS IT
- 5 Befestigungsschraube LCP Inline Protruding

Hinweis:

Falls am LCP Inline Protruding der rückwärtige Rahmen montiert ist, kann alternativ die Befestigung **hinten** zwischen dem Rahmen und dem Serverschrank analog zum LCP Rack über drei Anreihverbinder erfolgen (vgl. Abschnitt "Befestigung LCP Rack").

Alle Geräteausführungen:

- Bringen Sie ggf. die rückwärtige Tür am LCP Rack bzw. am rückwärtigen Adapter des LCP Inline Protruding an.
- Prüfen Sie abschließend nochmals den sicheren Stand des Liquid Cooling Package.

5.2.6 Montage der Seitenwand

Ist das Liquid Cooling Package nicht zwischen zwei Serverschränken eingereiht, schließen Sie es mit einer Seitenwand ab. Hierzu benötigen Sie:

- Standard VX Seitenwand
- Montagekit VX Seitenwand für LCP VX (3313.089)

Vorsicht! Verletzungsgefahr! Die Seitenwandhalter sind mit scharfkantigen Verzahnungen versehen, die eine Erdung der Seitenwand über das Liquid Cooling Package ermöglichen.

Gehen Sie zur Montage der Seitenwand folgendermaßen vor:

Entnehmen Sie dem Montagekit die verschiedenen Befestigungselemente f
ür die Seitenwand.

Abb. 43: Montagewinkel zur Befestigung der Seitenwand

Legende

- 1 LCP
- 2 Winkel
- 3 Befestigungsschraube
- Befestigen Sie die 6 Winkel mittels der beiliegenden Befestigungsschrauben und anhand der dem Montagekit beiliegenden Montagedarstellung.

Abb. 44: Befestigung der Winkel am LCP

Abb. 45: Montage der Seitenwand am LCP

Legende

- 1 LCP
- 2 Winkel
- 3 Blindnietmutter oben und unten mittig
- 4 Befestigungsschrauben
- 5 Seitenwand

- Hängen Sie eine Seitenwand an den beiden Seitenwandaufhängungen am Liquid Cooling Package ein und richten Sie sie zur Vorder- und Rückseite des Gerätes aus.
- Schrauben Sie die Seitenwand mit den Befestigungsschrauben an den Seitenwandhaltern und den Seitenwandbefestigungswinkeln fest.

Abb. 46: Fertig montierte Seitenwand

5.2.7 Punch Outs

Die "Punch outs" in der Seitenwand des LCP im hinteren Bereich können zur Kabel- und zur Durchführung von Rohrleitungen des Brandfrüherkennungssystems genutzt werden.

Abb. 47: "Punch outs" in der Seitenwand des LCP

Legende

1 Punch outs

5.3 Lüftermontage

Warnung! Verletzungsgefahr!

Vor dem Aus- und Einbau eines Lüfters muss am Elektronikmodul der zum Lüfter gehörende Schalter ausgeschaltet werden.

Vorsicht! Verletzungsgefahr! Beim Aus- und Einbau eines Lüfters besteht Verletzungsgefahr durch scharfe Kanten im Innenraum des LCP, durch hohe Luftgeschwindigkeiten und Lärm. Tragen Sie Handschuhe, Schutzbrille und Gehörschutz!

Je nach benötigter Kühlleistung bzw. zur Bildung von Redundanzen können bei den Geräten LCP Rack und LCP Inline Protruding insgesamt bis zu sechs Lüftermodule eingebaut werden. Beim Gerät LCP Inline Flush können bis zu vier Lüftermodule eingebaut werden (vgl. Abschnitt 16.2 "Kennlinien").

Hinweis:

Werden in ein Liquid Cooling Package der Ausführung "30 kW" mehr als drei Lüfter eingebaut, dienen diese zur Bildung von Redundanzen bzw. zur Effizienzsteigerung durch die geringere Leistungsaufnahme der einzelnen Lüftermodule.

5.3.1 Ausbau eines Lüftermoduls

Sollte es zu einem Defekt an einem Lüftermodul kommen, kann dieses schnell und einfach im laufenden Betrieb ausgetauscht werden.

Zum Ausbau eines Lüftermoduls gehen Sie folgendermaßen vor:

- Öffnen Sie die vorderseitige T
 ür des Liquid Cooling Package.
- Schalten Sie am Elektronikmodul den Ein-/Ausschalter des Lüfterpaares aus, von dem ein Lüfter ausgebaut werden soll.

Abb. 48: Elektronikmodul

Legende

- 1 Ein-/Ausschalter Lüfter 1/2
- 2 Ein-/Ausschalter Lüfter 3/4
- 3 Ein-/Ausschalter Lüfter 5/6

Hierbei gilt folgende Zuordnung zwischen den Ein-/Ausschaltern und den Lüftern:

- Ein-/Ausschalter 1: Lüfterpositionen 1 und 2
- Ein-/Ausschalter 2: Lüfterpositionen 3 und 4
- Ein-/Ausschalter 3: Lüfterpositionen 5 und 6

___ Hinweis:

Am LCP Inline Flush ist der Ein-/Ausschalter 3 (Abb. 48, Pos. 3) nicht belegt und somit ohne Funktion.

- Abb. 49: Lüfterpositionen LCP Rack und LCP Inline Protruding (links) sowie LCP Inline Flush (rechts)
- Öffnen Sie zunächst die Lüftertür vor dem Lüfter, der ausgebaut werden soll.

Abb. 50: Öffnen der Lüftertür

- Lösen Sie links und rechts die beiden Anschlussstecker DC und AC des Lüfters (Abb. 51, Pos. 2 und 4).
- Lösen Sie die Erdungsverbindung am Lüfter (Abb. 51, Pos. 3).

Abb. 51: Lüftermodul im Lüftereinschub

Legende

- 1 Lüfter
- 2 Anschlussstecker DC
- 3 Erdungsverbindung
- 4 Anschlussstecker AC
- 5 Lüftertür
- 6 Handgriff
- Drehen Sie das Lüftermodul im Einschub gegen den Uhrzeigersinn um 90° (Abb. 52).

Abb. 52: Gedrehtes Lüftermodul im Lüftereinschub

Greifen Sie das Lüftermodul mit zwei Händen links und rechts und ziehen Sie es aus dem Einschub heraus.

5.3.2 Einbau eines Lüftermoduls

Hinweis:

Der Einbauort der einzelnen Lüftermodule kann lastabhängig variiert werden.

Im Auslieferungszustand sind alle nicht mit einem Lüfter bestückten Einschübe mit einer Abdeckung verschlossen.

Vorsicht! Verletzungsgefahr! Vor dem Ein- bzw. Ausbau eines Lüfters ist die entsprechende Lüftergruppe am zugehörigen Schutzschalter spannungsfrei zu schalten.

■ Entnehmen Sie die Abdeckung aus dem Einschub.

Abb. 54: Gedrehte Abdeckung im Einschub

Schieben Sie die Scharnierbolzen mit einem Schlitzschraubendreher nach oben bzw. unten, um die Lüftertür einsetzen zu können.

5 Montage und Aufstellung

Abb. 55: Öffnen der Scharnierbolzen

Setzen Sie die Lüftertür ein und schließen Sie die Scharnierbolzen.

Setzen Sie das Lüftermodul um 90° gedreht auf den Einschubboden auf und schieben Sie es in den Einschub hinein.

5 Montage und Aufstellung

Abb. 57: Einschieben des Lüftermoduls

- Drehen Sie das Lüftermodul um 90° im Uhrzeigersinn, so dass die Anschlusskabel zu Ihnen zeigen.
- Stellen Sie den Erdungsanschluss des Lüftermoduls her.
- Stecken Sie links und rechts jeweils einen Anschlussstecker des Lüfters in die entsprechende Buchse am Liquid Cooling Package.

Hinweis:

Stellen Sie beim Anschluss sicher, dass die beiden Kabel des Lüfters nicht zu nah aneinander über längere Strecken parallel zueinander geführt werden. Abb. 51 zeigt eine optimale Verlegung der Kabel.

Schließen Sie die Lüftertür und arretieren Sie den Lüfter so im Einschub.

Abb. 58: Schließen der Lüftertür

Schalten Sie am Elektronikmodul den Schutzschalter des Lüfterpaares wieder ein, an dem ein Lüfter getauscht wurde. Aktivieren Sie den neu installierten Lüfter in der Software (vgl. Abschnitt 7.2.4 "LCP Configuration").

5.4 Einbau des optionalen Displays (SK 3311.030)

Vorsicht! Verletzungsgefahr! Beim Einbau des Displays besteht Verletzungsgefahr durch scharfe Kanten im Innenraum des LCP. Tragen Sie die persönliche Schutzausrüstung!

Im Auslieferungszustand ist die Fronttür des Liquid Cooling Package für den Einbau des optionalen Displays vorbereitet. Hierzu ist ein entsprechender Ausschnitt vorgeschnitten, es müssen nur die Befestigungsstege herausgebrochen werden.

- Öffnen Sie die Fronttür des Liquid Cooling Package.
- Brechen Sie die Befestigungsstege am vorbereiteten Displayausbruch aus der Fronttür des Liquid Cooling Package heraus und entnehmen Sie die Abdeckung.
- Schieben Sie das Display von außen in den Ausschnitt ein, bis es vorne an der Tür (Abb. 59, Pos. 1) des Liquid Cooling Package anliegt.
- Setzen Sie die Befestigungsklammern mit den Schrauben (Abb. 60, Pos. 2) links und rechts in das Display ein.
- Ziehen Sie von innen die beiden Befestigungsschrauben (Abb. 59, Pos. 2) an (IS 2,5).

Abb. 59: Befestigen des Displays

Legende

- 1 Innenansicht Tür LCP
- 2 Befestigungsschrauben
- 3 Anschlusskabel
- Stecken Sie das Anschlusskabel (Abb. 60, Pos. 4) unten am Display (Abb. 60, Pos. 3) ein.

Abb. 60: Vorbereiten des Displays

Legende

- 1 Display mit Touchfunktion
- 2 Befestigungsklammern
- 3 Anschlussstecker Display (4- und 12-polig)
- 4 Anschlusskabel

Hinweis:

Bei LCPs der Höhe 2200 mm liegt im Versandbeutel ein verlängertes Displaykabel bei.

Stecken Sie das Anschlusskabel des Displays an die entsprechende Buchse am Elektronikmodul an.

Abb. 61: Anschlusspunkt am Elektronikmodul

Legende

1 Anschlusspunkt Displaykabel

Hinweis:

Nach dem Anschließen startet das Display und die Hauptseite der Benutzeroberfläche wird angezeigt.

Schließen Sie die vorderseitige Tür des Liquid Cooling Package.

$\mathbf{G}^{\mathbf{F}}$

Verwenden Sie zum Reinigen des Displays geeignete Reinigungsmittel, wie z. B. übliche Haushaltsreiniger, die die Oberfläche des Displays nicht angreifen. 5.5 Einbau der optionalen Kondensatpumpe (SK 3314.012)

Warnung! Verletzungsgefahr! Vor dem Einbau der Kondensatpumpe muss das LCP am Hauptschalter vollständig ausgeschaltet und gegen unbeabsichtigtes Einschalten gesichert werden.

Vorsicht! Verletzungsgefahr! Beim Einbau der Kondensatpumpe besteht Verletzungsgefahr durch scharfe Kanten im Innenraum des LCP. Tragen Sie die persönliche Schutzausrüstung!

Wenn es nicht möglich ist, das Kondensat allein durch die Schwerkraft aus der Bodenwanne abzuleiten, sollte eine Kondensatpumpe installiert werden. Diese Kondensatpumpe wird automatisch von der Steuerung aktiviert, wenn ein Niveausensor einen entsprechende Füllstand in der Bodenwanne meldet.

Montieren Sie hinten rechts in einem Abstand von 830 mm gemäß Einlegezettel die Kondensatpumpe durch die Befestigungsbohrungen am Rahmen des Liquid Cooling Package.

Abb. 62: Montagehöhe der Kondensatpumpe

Hierzu befinden sich um Lieferumfang entsprechende Befestigungsschrauben.

5 Montage und Aufstellung

Abb. 63: Befestigen der Kondensatpumpe

Legende

- 1 Rahmen des LCP
- 2 Befestigungsschrauben
- 3 Kondensatpumpe
- Entfernen Sie den Kondensatablaufschlauch am unteren Ablauf der Bodenwanne.

Abb. 64: Kondensatablauf

Legende

- 1 Bodenwanne
- 2 Oberer Kondensatablauf (Notüberlauf)
- 3 Unterer Kondensatablauf
- Stecken Sie am unteren Kondensatablauf (Abb. 64) den Adapter aus dem Lieferumfang auf.
- Schieben Sie das freie Ende des blauen Polyamid-Schlauchs, der an der Unterseite der Kondensatpumpe am Saugstutzen angeschlossen ist, auf den Adapter auf.
- Führen Sie das freie Ende des blauen Schlauchs, der seitlich an der Kondensatpumpe am Druckstutzen angeschlossen ist, einem Abwasseranschluss mit Geruchsverschluss zu.

Abb. 65: Anschließen der Schläuche am LCP

Legende

- 1 Druckstutzen
- 2 Kondensatpumpe
- 3 Saugstutzen
- 4 Schlauch zum Abwasseranschluss
- 5 Schlauch zum Adapter
- 6 Adapter

___ Hinweis:

Der Ablaufschlauch der Kondensatpumpe darf nicht direkt an das Abwassersystem angeschlossen werden, sondern muss einem Abwasseranschluss mit Geruchsverschluss zugeführt werden. Beim Anschluss sind die geltenden Regeln der Technik zu beachten.

- Schließen Sie am oberen Kondensatablauf der Bodenwanne (Notablauf) den Schlauch wieder an, den Sie im ersten Schritt vom unteren Ablauf entfernt hatten.
- Sichern Sie den Schlauch mit dem Kabelbinder aus dem Lieferumfang am Anschluss.
- Führen Sie diesen Schlauch ebenfalls einem Abwasseranschluss mit Geruchsverschluss zu (vgl. Abschnitt 6.1.4 "Kondensatablauf anschließen").
- Schließen Sie oben auf der Kondensatpumpe die beiden Anschlusskabel an.

Abb. 66: Anschlusspunkte oben auf der Kondensatpumpe

Legende

- 1 Spannungsversorgung (3-polig)
- 2 Steuerleitung (3-polig)
- Führen Sie das DC- und das AC-Kabel der Kondensatpumpe räumlich getrennt nach oben zu den Anschlussbuchsen im LCP (Abb. 68).

Aus Gründen der elektromagnetischen Verträglichkeit muss dabei auf der Kabelführung besonderes Augenmerk liegen (Abb. 67).

Abb. 67: Verlegung der Anschlusskabel

Legende

- 1 AC-Kabel
- 2 DC-Kabel

- 5 Montage und Aufstellung
- Schließen Sie die Kabel dort entsprechend an den Anschlussbuchen an.

Abb. 68: Anschlusspunkte

Legende

- 1 Spannungsversorgung (X2)
- 2 Steuerleitung (X7)

Auf der Vorderseite des Geräts muss zusätzlich ein Niveausensor installiert werden.

- Entfernen Sie den Lüfter bzw. die Abdeckung an der untersten Position (vgl. Abschnitt 5.3.1 "Ausbau eines Lüftermoduls").
- Lösen Sie links und rechts jeweils eine Befestigungsschraube, mit der das untere Abdeckblech befestigt ist und entnehmen Sie das Abdeckblech.

Hinweis:

Achten Sie beim Entnehmen des Abdeckblechs darauf, dass die am Abdeckblech befindliche Tülle festgehalten wird.

Abb. 69: Abdeckblech

Legende

- 1 Befestigungsschrauben (2 x)
- 2 Abdeckblech
- Lösen und entnehmen Sie die beiden Muttern (SW 10), mit denen der Sensorträger befestigt ist und entnehmen Sie den Sensorträger.

5 Montage und Aufstellung

Abb. 70: Sensorträger und Sensoren

Legende

- 1 Sensorträger
- 2 Leckagesensor
- 3 Befestigungsmuttern M6 (2x)
- 4 Schraube (SW 19)
- Lösen und entnehmen Sie die Schraube (SW 19) am unteren Anschlusspunkt des Sensorträgers.

Abb. 71: Sensorträger

Legende

- 1 Sensorträger
- 2 Schraube (SW 19)
- Befestigen Sie den Niveausensor aus dem Lieferumfang der Kondensatpumpe in der Öffnung im Sensorträger.

Abb. 72: Befestigung des Niveausensors

Legende

- 1 Sensorträger
- 2 Niveausensor
- Führen Sie das Anschlusskabel des Niveausensors durch die Kabeltülle im Sensorträger zum entsprechenden Anschlusskabel X17 und schließen Sie es dort an (vorne rechts).
- Setzen Sie den Sensorträger und das Abdeckblech wieder ein und befestigen Sie beide Bleche wieder mit den Muttern bzw. Schrauben.
- Fahren Sie mit dem Wiedereinbau vom Lüftermodul bzw. der Abdeckung fort.

5.6 Platzierung der Drucksensoren

Bei Regelung der Lüfterdrehzahl auf die Druckdifferenz benötigen Sie zusätzlich wenigstens einen, maximal zwei Differenzdrucksensoren (7030.150). Diese sind im Rittal Zubehör verfügbar.

- Montieren Sie den Differenzdrucksensor gemäß der dem Sensor beiliegenden Anleitung auf der Kaltluftseite im Rack.
- Achten Sie bei der Montage der zugehörigen Luftschläuche darauf, dass sich die beiden Messstellen für Referenzdruck und Vergleichsmessung nicht in einem direkten Luftstrom befinden.
- Verlegen Sie den Luftschlauch am Anschluss "+" an eine geeignete Stelle auf der Kaltluftseite im Rack und den Luftschlauch am Anschluss "–" auf die Warmluftseite im Rack.
- Schließen Sie den Drucksensor am CAN-Bus-Anschluss des Climate Controllers an (vgl. Abb. 99).
 Der Sensor wird dann über die "Real Devices" im Baum auf der Website des LCP verwaltet.

6 Installation

Während der Installation des Geräts muss die persönliche Schutzausrüstung, bestehend wenigstens aus wasserdichten Schutzhandschuhen sowie einer Schutzbrille, getragen werden.

6.1 Anschließen des Liquid Cooling Package

6.1.1 Elektrischer Anschluss

Allgemeines

Hinweis:

Bewahren Sie die Elektrounterlagen stets so auf, dass sie bei Bedarf sofort zur Verfügung stehen. Nur diese Unterlagen sind für das Gerät verbindlich.

Vorsicht!

Arbeiten an elektrischen Anlagen oder Betriebsmitteln dürfen nur von einer Elektrofachkraft oder von unterwiesenem Personal unter Leitung und Aufsicht einer Elektrofachkraft den elektrotechnischen Regeln entsprechend vorgenommen werden.

Das Gerät darf erst nach Lesen dieser Informationen von den o.g. Personen angeschlossen werden!

Nur spannungsisoliertes Werkzeug benutzen.

Persönliche Schutzausrüstung tragen.

Die Anschlussvorschriften des zuständigen Stromversorgungsunternehmens sind zu beachten.

Die Spannungsangaben im Schaltplan / auf dem Typenschild müssen mit der Netzspannung übereinstimmen.

Als Leitungs- und Gerätekurzschlussschutz ist die im Schaltplan / auf dem Typenschild angegebene Vorsicherung einzusetzen. Das Gerät muss einzeln abgesichert werden.

Vorsicht!

Das Gerät hat einen hohen Ableitstrom. Daher muss vor Anschluss der Netzleitung und vor dem Einschalten des Geräts unbedingt eine Erdungsverbindung von 10 mm² hergestellt werden (vgl. Abschnitt 16.5 "Anschlussschema").

Das Gerät muss über eine Trennvorrichtung an das Netz angeschlossen werden, die im ausgeschalteten Zustand eine Kontaktöffnung von mindestens 3 mm gewährleistet.

Das Gerät muss in Übereinstimmung mit den nationalen Verkabelungsvorschriften installiert werden.

Die Elektroinstallation muss gemäß der NEC- und CEC-Standards für USA und Kanada erfolgen.

In der Festverkabelung muss eine Trennvorrichtung vorgesehen werden.

Dem Gerät darf einspeisungsseitig keine zusätzliche Regeleinrichtung vorgeschaltet werden.

Vollständige Trennung ist die Kontakttrennung eines Pols, um das Äquivalent zur Basisisolierung nach IEC 61058-1 zwischen dem Versorgungsnetz und den zu trennenden Teilen zu gewährleisten.

Die Stromversorgung des Liquid Cooling Package erfolgt wahlweise über eine 3-adrige oder 5-adrige separate Zuführung (nach Kundenwunsch).

Das Gerät wird immer mit einer 5-poligen Buchse für den Netzanschluss geliefert, so dass der Betreiber, entsprechend seiner Anforderungen, ein eigenes Anschlusskabel mit Netzstecker (3- oder 5-adrig) anbringen kann.

Der Anschluss erfolgt entweder von unten oder alternativ auch von oben durch das Dachblech.

Anschluss von unten

- Führen Sie das Anschlusskabel auf der Rückseite des Geräts von unten durch den Boden ein.
- Führen Sie das Anschlusskabel im Gerät am rechten Schrankrahmen nach oben.
- Stellen Sie z. B. mit Kabelbindern eine ausreichende Zugentlastung des Anschlusskabel sicher.

Hinweis:

Anschluss von oben

Um das Anschlusskabel von oben in das LCP einzuführen, sind im Dachblech drei entsprechende Punch outs vorgesehen.

Abb. 73: "Punch outs" im Dachblech des LCP

Legende

- 1 Punch outs
- Entfernen Sie die benötigte Ausstanzung im Dachblech.
- Führen Sie das Anschlusskabel mit einer Kabelverschraubung von oben in das Gerät ein.
- Stellen Sie z. B. mit Kabelbindern eine ausreichende Zugentlastung des Anschlusskabel sicher.

Abb. 74: Anschlüsse im hinteren oberen Bereich

Legende

- 1 Anschluss eines CAN-Bus-Sensors (Bus)
- 2 Klemmleiste X6 mit Alarm-Relaisausgang (potenzialfreier Kontakt, max. 48 V DC / 1 A oder 250 V AC / 2 A) und zwei digitalen Eingängen (je 24 V an den Klemmen 4 und 6)
- 3 Netzwerkanschluss ETH1
- 4 Steuerleitung optionale Kondensatpumpe X3 (3312.012)
- 5 Steuerleitung optionale Kondensatpumpe X7 (3314.012)
- 6 Netzwerkanschluss ETH2
- 7 Klemmleiste 5-polig für Netzanschluss X1
- 8 Spannungsversorgung optionale Kondensatpumpe (3312.012 und 3314.012)
- 9 Schmelzsicherungen F1, F2, F3

_ Hinweis:

LCP-VX globale Version 3 x 10 A, Rittal Ident-Nr. 343449

Jeweils zwei der im Liquid Cooling Package eingebauten Lüftermodule liegen auf einer separaten Phase.

Wird das Liquid Cooling Package mit Hilfe eines 3-adrigen, einphasigen Anschlusskabels (L, N, PE) an das Stromnetz angeschlossen, muss daher eine Phase dieses Kabels auf die beiden anderen Phasenklemmen gebrückt werden.

Wird das Liquid Cooling Package mit Hilfe eines 5-adrigen Anschlusskabels (3~, N, PE) an das Stromnetz angeschlossen, stehen jeweils drei separate Phasen (L1, L2, L3) zur Verfügung.

Beim Ausfall einer Anschlussphase wird das Gerät weiterhin mit Spannung versorgt und bleibt folgendermaßen in Betrieb:

Ausfall Phase L1:

Die Lüfter an den Positionen 1 und 2 schalten ab, die Lüfter an den Positionen 3 bis 6 bleiben weiterhin in Betrieb.

Ausfall Phase L2:

Die Lüfter an den Positionen 3 und 4 schalten ab, die Lüfter an den Positionen 1 und 2 sowie 5 und 6 bleiben weiterhin in Betrieb.

Ausfall Phase L3:

Der Climate Controller hat keine Versorgungsspannung mehr. Die Lüfter an den Positionen 5 und 6 schalten ab. Die Lüfter an den Positionen 1 bis 4 gehen wegen des fehlenden Sollwerts von der Regeleinheit in einen sog. "Failsafe"-Betrieb mit 100 % Lüfterdrehzahl. Außerdem hat die optional installierte Kondensatpumpe keine Versorgungsspannung mehr.

Sehen Sie in der Zuleitung des Liquid Cooling Package die auf dem Typenschild angegebene Sicherung vor (bei einphasigem Betrieb z. B. ein 20 A-Vorsicherung), um auch bei Vollbestückung mit vier bzw. sechs Lüftern, die erforderliche Absicherung zu erhalten.

_ Hinweis:

Hinweise zum Querschnitt der Anschlussleitung können Sie dem Abschnitt 16.5 "Anschlussschema" entnehmen.

Gefahr!

Auf keinen Fall eine der Phasen mit dem Nullleiter oder dem Erdleiter kurzschließen. Gefahr von Schäden und Verletzungen!

Elektrischer Anschluss mit dem beiliegenden 5poligen Anschlussstecker

Abb. 75: Lieferumfang des Anschlusssteckers

5-adrig, dreiphasiger Anschluss

Zum Anschließen des Liquid Cooling Package an das Stromnetz mit Hilfe eines 5-adrigen, dreiphasigen Anschlusskabels (L1, L2, L3, N, PE) gehen Sie folgendermaßen vor:

- Entfernen Sie die Gummiummantelung des Anschlusskabels auf einer Länge von ca. 45 mm.
- Kürzen Sie den Neutralleiter (N) und die drei Phasenleiter (L1, L2, L3) auf eine Länge von ca. 35 mm. Belassen Sie die Länge des Schutzleiters bei ca. 45 mm.
- Entfernen Sie die Isolierung aller Leiter mit einem geeigneten Werkzeug auf einer Länge von ca. 9 mm.

Abb. 76: Maße zum Entfernen der Gummiummantelung und der Isolierung

- Versehen Sie die Leiterenden mit Aderendhülsen ohne Isolierkragen und wenden Sie eine Vier-Backen-Pressung an.
- Schließen Sie alle Leiter an den Anschlussstecker (X-Com-Stecker) an.
- Führen Sie einen geeigneten Schraubendreher (Klingemaße 3,5 x 0,5 mm) in eine Betätigungsöffnung (Abb. 78, Pos. 1) ein und öffnen Sie die zugehörige Klemmstelle der Leitereinführung (Abb. 78, Pos. 2).
- Führen Sie den Leiter vollständig in die Leitereinführung ein und entfernen Sie anschließend den Schraubendreher, um die Klemmstelle zu schließen.

Abb. 77: Schema des Anschlusssteckers für dreiphasigen Anschluss

Abb. 78: Anschlussstecker - Rückseite

Legende

- 1 Betätigungsöffnung für die Klemmstelle der Leitereinführung
- 2 Leitereinführung

Hinweis:

Die Belegung des Anschlusssteckers entnehmen Sie bitte dem Abschnitt 16.5 "Anschlussschema".

- Drücken Sie das Unterteil des Zugentlastungsgehäuses von unten an den Anschlussstecker an.
- Führen Sie die Leiter im Zugentlastungsgehäuse, wie in Abb. 79 dargestellt, und fixieren Sie das Anschlusskabel mit Hilfe einer Kabelschelle am Zugentlastungsgehäuse.

6 Installation

Abb. 79: Anschlussstecker mit Zugentlastungsgehäuse

Legende

- 1 Zugentlastung für Leitungen mit Ø >12 mm
- 2 Zugentlastung für Leitungen mit Ø <12 mm

_ Hinweis:

- Um eine ausreichende Zugentlastung auch bei Leitungen mit einem Durchmesser <12 mm zu gewährleisten, ist das Einlegen einer zweiten Kabelschelle unter der Leitung erforderlich (Abb. 79, Pos. 2).
- Verschließen Sie das Zugentlastungsgehäuse, indem Sie das Oberteil des Gehäuses von oben auf das Unterteil drücken (Abb. 80).

Abb. 80: Verschließen des Zugentlastungsgehäuses

3-adrig, einphasiger Anschluss

Vorsicht! Beim 3-adrigen, einphasigen Anschluss muss der Leiterquerschnitt mindestens 2,5 mm² betragen.

Zum Anschließen des Liquid Cooling Package an das Stromnetz mit Hilfe eines 3-adrigen, einphasigen Anschlusskabels (L1, N, PE) gehen Sie folgendermaßen vor:

Entfernen Sie die Gummiummantelung des Anschlusskabels auf einer Länge von ca. 45 mm.

- Kürzen Sie den Neutralleiter (N) und den Phasenleiter (L) auf eine Länge von ca. 35 mm. Belassen Sie die Länge des Schutzleiters bei ca. 45 mm.
- Entfernen Sie die Isolierung aller Leiter mit einem geeigneten Werkzeug auf einer Länge von ca. 9 mm.

Abb. 81: Maße zum Entfernen der Gummiummantelung und der Isolierung

— Hinweis:

 Das Beispiel zeigt die Farbkodierung nach DIN VDE 0293:
 blau = Neutralleiter N
 braun = Phasenleiter L
 gelb/grün = Schutzleiter PE

- Versehen Sie die Leiterenden mit Aderendhülsen ohne Isolierkragen. Verwenden Sie zum Aufcrimpen der Hülsen eine geeignete Crimpzange mit Zwangssperre gegen vorzeitiges Öffnen.
- Überbrücken Sie die Phasenanschlüsse am Anschlussstecker mit Hilfe der beiden mitgelieferten Brücken. Setzen Sie eine Brücke zwischen die Phasenleiter L1 und L2 und eine Brücke zwischen die Phasenleiter L2 und L3.

Rittal Liquid Cooling Package

200 - 240 V / 1~ L1 | L1 | L1 | N | PE

- Abb. 82: Schema des Anschlusssteckers für einphasigen Anschluss
- Setzen Sie in den Anschlussstecker über den Phasenanschlüssen die korrekten Bezeichner aus dem Lieferumfang ein (3 x L1).
- Gehen Sie zum weiteren Anschluss des Anschlusssteckers vor, wie im Abschnitt "5-adrig, dreiphasiger Anschluss" beschrieben.

6.1.2 Potenzialausgleich

Um das LCP in den kundenseitig vorhandenen Potenzialausgleich einzubinden, muss am Anschlusspunkt des Potenzialausgleichs ein Leiter angeschlossen werden. Der Anschlusspunkt ist mit dem dafür erforderlichen Schaltsymbol gekennzeichnet.

Abb. 83: Potenzialausgleich

Legende

Potenzialausgleich 1

6.1.3 Kühlwasseranschluss

Das Liquid Cooling Package wird über zwei G11/2"-Rohrgewinde-Anschlüsse (Außengewinde) an Vor- und Rücklauf mit dem Kaltwassernetz verbunden (auf der Geräterückseite im unteren Bereich). Die Anschlussstutzen sind waagerecht schräg nach hinten angeordnet.

Vorsicht! Verletzungsgefahr! Beim Anbringen der Kühlwasserverrohrung besteht Verletzungsgefahr durch scharfe Kanten im Innenraum des LCP. Tragen Sie die persönliche Schutzausrüstung!

Abb. 84: Wasseranschluss

Legende

- Wärmetauscher 1 2 Kühlmedienrücklauf mit G11/2"-Außengewinde
- З Rückschlagventil
- 4 Kühlmedienvorlauf mit G11/2"-Außengewinde
- 5 Volumenstrommesser
- 6 Regelkugelhahn
- 7 Bodenwanne
- 8 Kondensatablauf ohne Kondensatpumpe
- 9 Notüberlauf
- 10 Temperaturfühler Vorlauf
- 11 Temperaturfühler Rücklauf

Der Anschluss erfolgt nach unten in einen evtl. vorhandenen Doppelboden oder alternativ auch nach oben aus dem Gerät heraus. Die Abmessungen der für den Anschluss notwendigen Montageöffnungen sind in der Übersichtszeichnung im Abschnitt 16.3 "Übersichtszeichnungen" dargestellt.

■ Lösen Sie für einen Anschluss nach oben die vier Befestigungsschrauben des Dachblechs.

Abb. 85: Drehen des Dachblechs

Legende

- Befestigungsschrauben
- 2 Dachblech
- Drehen Sie das Dachblech um 180° und befestigen Sie es in dieser Position wieder mit den vier Befestigungsschrauben.

Abb. 86: Gedrehtes Dachblech

Vorsicht! Verletzungsgefahr!

Beim Anbringen der Kühlwasserverrohrung besteht Verletzungsgefahr durch austretendes Kühlmedium, insbesondere durch Glykol. Tragen Sie die persönliche Schutzausrüstung!

Hinweis:

Verwenden Sie für den Kühlwasseranschluss möglichst flexible Schläuche (vgl. Abschnitt 15 "Zubehör").

Hinweis:

Erfolgt der Anschluss nach oben aus dem Gerät heraus, fixieren Sie die Anschlussschläuche links und rechts am Rahmen des LCP. Hierdurch wird die Luftansaugung nicht beeinflusst.

_ Hinweis:

Der Kühlwasseranschluss muss **immer** mit Überwurfmuttern ausgeführt werden, auch wenn Sie nicht das Schlauchanschlusskit (SK 3311.040) von Rittal nutzen. In diesem Schlauchanschlusskit sind neben den Anschlussschläuchen auch entsprechende Überwurfmuttern enthalten.

Beachten Sie bei der Installation die geltenden Vorschriften zur Wasserqualität und zum Wasserdruck!

Im Falle von niedrigen Wasservorlauftemperaturen sollten Vor- und Rücklaufleitungen entsprechend isoliert sein. Andernfalls ist mit Kondensat auf den Zuführungen zu rechnen.

Hinweis:

Unmittelbar nach dem Anschließen des Wasserkreislaufs kann der Durchfluss bei Ausrüstung des Geräts mit dem optionalen Display mit Touchfunktion kontrolliert werden. Dazu ist zunächst zu prüfen, ob der Regelkugelhahn vollständig geöffnet ist (vgl. Abschnitt 8.2.3 "Bedienung im Stand-Alone-Betrieb"). Sollte der Regelkugelhahn nur teilweise geöffnet oder geschlossen sein, kann er in der Betriebsart "Manual" über die Weboberfläche geöffnet werden (vgl. Abschnitt 8.5.12 "Features").

Hinweis:

Die bauseitige Verrohrung sollte nach dem Tichelmann-Prinzip (Abb. 90) ausgeführt sein, um ein hydraulisch ausbalanciertes System zu erhalten.

Ist dies nicht der Fall, muss die Durchflussmenge jedes Liquid Cooling Package über einen Durchflussmengenregler sichergestellt werden.

Idealerweise erfolgt die Anbindung der Liquid Cooling Packages bei Verwendung eines Wasser/Glykol-Gemischs an den Kühlwasserkreislauf über einen Wasser/Wasser-Wärmetauscher.

- Vorteil:
- Reduktion der Wassermengen im Sekundärkreislauf,
- Einstellung einer definierten Wasserqualität,
- Einstellung einer definierten Vorlauftemperatur und
- Einstellung eines definierten Volumenstroms.

Allgemeine Hinweise zum Kaltwassersystem

Generell ist das Kaltwassersystem mit seiner Funktion bei der IT-Klimatisierung vor eine große Herausforderung gestellt. Diese ergibt sich dadurch, dass das IT-Equipment, dessen Verlustleistung mit dem Kaltwassersystem abgeführt werden soll, mehrere Lastwechsel in der Minute durchlaufen kann. Diese Hysterese überträgt sich unmittelbar in das Kaltwassersystem, wodurch sich hier ein pendelndes ΔT ergibt. Wird so durch das IT-Equipment ein großer Lastsprung erzeugt, der für ein schnelles Ansteigen der Verlustleistung sorgt, muss vom Kaltwassersystem sofort kaltes Wasser zur Verfügung gestellt werden. Je nach Entfernung des Kälteerzeugers vom IT-Kaltwasserkreis entsteht hier eine große Totzeit, in der kein Wasser zum Kühlen der IT-Verlustleistung zur Verfügung steht.

Durch diese vom IT-Equipment hervorgerufene Hysterese ist ein Schwanken des Δ T im Kaltwasserkreis unumgänglich. Schwankungen von 1 K bis 10 K sind bei der IT-Klimatisierung nicht unüblich. Aus diesem Grund kann für die Rohrnetzberechnung nicht mit einem im Kaltwasserkreis üblichen Δ T von 6 K gerechnet werden. Bei Liquid Cooling Packages wird immer der benötigte Volumenstrom für die Nennkühlleistung angegeben. Mit diesem Volumenstrom kann bei der Rohrnetzberechnung die richtige Rohrdimension ausgewählt werden. Da pro Liquid Cooling Package enorme Kühlleistungen bis 53 kW erbracht werden müssen, empfiehlt es sich, neben den einzelnen Strängen auch die Einzelanschlussleitungen hydraulisch zu regulieren.

Beispiel Einspritzschaltung

Durch den Einsatz einer hydraulischen Schaltung kann das Schwanken des ΔT im Kaltwasserkreis abgefangen werden. Wird z. B. eine Einspritzschaltung aufgebaut, kann das Kaltwassersystem der vom IT-Equipment erzeugten Hysterese entgegenwirken.

Bei der Einspitzschaltung wird der Primärkreis so dicht wie möglich an den Sekunderkreis herangebracht. Der Sekundärkreis wird unmittelbar in der Nähe der Verbraucher aufgebaut. Das kalte Wasser kann permanent im Primärkreis zirkulieren und steht somit immer dann an, wenn es vom Sekundärkreis benötigt wird. Ohne diese Schaltung muss das kalte Wasser erst die komplette Diszanz vom Erzeuger zum Verbraucher zurücklegen, wenn die Verbraucher den Durchfluss ändern. Auch kann hier im Primärkreis eine deutlich niedrigere Temperatur herrschen als im Sekundärkreis, z. B. 6 °C im Primärkreis und 15 °C im Sekundärkreis durch Mischung. Somit stellt die Primärkreispumpe 1 dem Sekundärkreis permanent Wasser zur Verfügung. Das Mischventil im Rücklauf begrenzt hier die Wassermenge, die aus dem Sekundärkreis zurück in den Primärkreis fließt, somit ist hier auch die einfließende Wassermenge begrenzt. Die Sekundärkreispumpe lässt hier nun die gesamte Wassermenge zirkulieren, die zur Kühlung im Sekundärkreis benötigt wird und ist für die Mischung der Temperaturen verantwortlich. Pumpe 2 lässt über den Bypass Wasser aus dem Sekundärrücklauf in den Sekundärvorlauf "einspritzen", somit wird das kalte Wasser aus dem Primärkreis direkt auf das richtige Temperaturniveau angehoben. Die Einspritzschaltung ist hier ein Beispiel und eine von vielen Möglichkeiten, das Kaltwassersystem auf die Anforderungen der IT-Klimatisierung anzupassen.

Abb. 87: Einspritzschaltung (Prinzipschema)

Im LCP ist wasserseitig ein Sensor eingebaut, der ohne bewegliche Bauteile den Wasserdurchfluss misst. Der Messbereich dieses Durchflussmessers liegt bei den 30 kW CW-, den 53 kW CW- sowie den CWG-Geräten zwischen 5 l/min und 150 l/min. Die Messunsicherheit liegt im Bereich 1 % FS bei Durchflüssen unterhalb 10 l/min und bei ca. 0,3 % FS oberhalb von 10 l/min.

Sind die Serverracks zu Beginn nur mit wenig IT-Equipment bestückt oder es wird mit geringen Wasservorlauftemperaturen gearbeitet (z. B. 10 °C), ergibt sich eine geringe Durchflussmenge. Liegt diese Durchflussmenge unterhalb der o. g. Untergrenzen, kann dies zu Systemwarnungen des Durchflussmessers führen. Diese Warnungen können durch Konfiguration der Parameter "System Warning min. Flow" und "System Warning min. Valve" abgestellt werden (vgl. Abschnitt 7.2.4 "LCP Configuration")

Alternativ kann ein Auftreten dieser Fehlermeldungen auch mit Hilfe der Einspritzschaltung vermieden werden. Hierzu muss das zugeführte Kühlwasser aus Primärund Sekundärkreis anders gemischt werden, sodass sich eine höhere Vorlauftemperatur ergibt.

Tichelmann-Prinzip und hydraulischer Abgleich

Für eine effiziente Kaltwasserversorgung des Liquid Cooling Package sollte das Kaltwassersystem hydraulisch abgeglichen werden. Ohne einen Abgleich der Hydraulik werden die LCP-Systeme nicht homogen mit der benötigten Kaltwassermenge versorgt. Dies wirkt sich negativ auf den effizienten Betrieb aus.

Abb. 88: Kälteverteilung ohne hydraulischen Abgleich

Legende

- 1 Umwälzpumpe
- 2 Absperrorgan
- 3 Feinfilter
- 4 Rücklauf
- 5 Vorlauf
- 6 Pumpendruck
- 7 Kälteversorgung
- 8 Rohrreibungsdruckgefälle
- 9 Öffnungsgrad Regelventil
- 10 Regelventil

Ein hydraulischer Abgleich kann hier über Strangregulierventile erfolgen.

Abb. 89: Kälteverteilung mit hydraulischem Abgleich

Werden jedoch die Einzelanschlussleitungen für die LCP-Systeme nach dem Anschlussprinzip "Tichelmann" verlegt, ist kein hydraulischer Abgleich nötig. Alle Einzelanschlussleitungen haben bei dieser Anschlussvariante den gleichen Druckverlust.

Abb. 90: Kälteverteilung mit Tichelmann-Prinzip

Hinweis:

Vor der wasserseitigen Inbetriebnahme sind alle Versorgungsleitungen ausreichend zu spülen.

Hinweis:

Zur Vermeidung von Flüssigkeitsverlusten durch Diffusion bei geschlossenen Systemen empfiehlt sich der Einsatz einer automatischen Befüllung mit aufbereitetem Ergänzungswasser.

Hinweis:

Der im Gerät verwendete 2-Wege-Regelkugelhahn ist stromlos geöffnet.

6.1.4 Kondensatablauf anschließen

Eventuell anfallendes Kondensat wird in der Bodenwanne (Abb. 91, Pos. 1) im Wassermodul des Liquid Cooling Package gesammelt.

Abb. 91: Kondensatablauf

Legende

- 1 Bodenwanne
- 2 Oberer Kondensatablauf (Notüberlauf)
- 3 Unterer Kondensatablauf

Der Kondensatablauf darf nicht direkt an das Abwassersystem angeschlossen werden, sondern muss einem Abwasseranschluss mit Geruchsverschluss zugeführt werden. Beim Anschluss sind die geltenden Regeln der Technik zu beachten.

Zusätzlich ist das Liquid Cooling Package mit einem Kondensatablauf (Abb. 91, Pos. 2 bzw. 3) ausgestattet, über den das anfallende Kondensat drucklos aus dem Liquid Cooling Package heraus geleitet wird. Am Kondensatablauf ist werkseitig ein Schlauch angeschlossen. Dieser Schlauch muss bauseitig einem Abfluss mit Geruchsverschluss zugeführt werden, damit anfallendes Kondensat aus dem Gerät abgeleitet wer-

den kann. Tritt eine Leckage im Wasserkreislauf auf, wird bei Erreichen eines definierten Pegelstandes in der Bodenwanne über den Leckagesensor eine Meldung ausgelöst. In Abhängigkeit dieser Leckagemeldung kann der Status des Regelkugelhahns eingestellt werden (vgl. Abschnitt 7.2.4 "LCP Configuration"). Bei Auswahl der Option **Emergency Mode** schließt das Ventil komplett, bei

Auswahl der Option **Only Alarm Message** wird lediglich eine Alarmmeldung ausgegeben.

Hinweis:

- Um einen sicheren Kondensatablauf zu gewährleisten, sind folgende Punkte zu beachten:
 - Ablaufschlauch knickfrei und mit Gefälle verlegen.
 - Schlauchquerschnitt nicht verkleinern.

Hinweis:

Um eine erhöhte Kondensatentwicklung zu vermeiden und im Sinne der Energieeinsparung sollte die Kühlwassertemperatur der notwendigen Kühlleistung angepasst werden.

6.1.5 Entlüftung des Wärmetauschers

Warnung! Gefahr durch Frostschutzmittel und Spritzwasser!

Tragen Sie Schutzbrille und Schutzhandschuhe.

Am obersten Punkt des Wärmetauscherpakets im Liquid Cooling Package ist ein Entlüftungsventil montiert. Gehen Sie während der Inbetriebnahme zur Entlüften des Wärmetauschers folgendermaßen vor:

■ Öffnen Sie die hintere LCP-Tür.

6 Installation

- Stecken Sie den Ablaufschlauch aus dem Zubehör oben am Entlüftungsventil auf den Steckverbinder (Abb. 92, Pos. 2).
- Führen Sie das andere Ende des Schlauchs einem Gefäß zu.
- Öffnen Sie das Entlüftungsventil (Abb. 92, Pos. 1) mit dem Vierkantschlüssel aus dem Lieferumfang
- Schließen Sie das Entlüftungsventil wieder, wenn keine Luftblasen mehr im Auffanggefäß zu erkennen sind. Der Wärmetauscher ist nun entlüftet.

Abb. 92: Entlüftung des Wärmetauschers

Legende

- 1 Entlüftungsventil
- 2 Anschluss Ablaufschlauch
- Schließen Sie abschließend die rückseitige LCP-Tür.

Hinweis:

Die Entlüftung des Systems findet in der Regel während der Inbetriebnahme statt. Nach der Entlüftung muss das Entlüftungsventil wieder verschlossen werden.

6.2 Kühlbetrieb und Regelverhalten

Wird das Liquid Cooling Package mit Spannung versorgt, regelt der Regelkugelhahn den Kühlwasserdurchfluss entsprechend der eingestellten Soll-Temperatur. Weitere Erläuterungen entnehmen Sie bitte dem Abschnitt 3.1 "Allgemeine Funktionsbeschreibung". Detaillierte Diagramme zur Kühlleistung sowie zum Druckverlust finden Sie im Abschnitt 16.2 "Kennlinien".

6

7 Konfiguration

7 Konfiguration

7.1 Allgemeines

Die Grundkonfiguration des Liquid Cooling Package, insbesondere die (einmalige) Anpassung der Netzwerkeinstellungen, kann auf verschiedene Arten durchgeführt werden:

- 1. HTTP-Verbindung über die Ethernet-Schnittstelle
- 2. Telnet/SSH-Verbindung über die Ethernet-Schnittstelle
- 3. Serielle Verbindung über ein USB-Kabel

In der Regel werden die Einstellungen über eine HTTP-Verbindung durchgeführt. Falls dies nicht möglich ist, z. B. weil der Zugriff über HTTP bzw. HTTPS deaktiviert wurde, empfiehlt sich der Zugriff über eine Telnet/SSH-Verbindung. Hierzu muss, wie beim Zugriff über eine HTTP-Verbindung, die IP-Adresse des in das Liquid Cooling Package verbauten Climate Controllers bekannt sein. Ist diese Adresse nicht bekannt, kann ein direkter Zugriff auf das Gerät über die USB-C serielle Schnittstelle erfolgen.

Die folgenden Beschreibungen gehen davon aus, dass sich das Liquid Cooling Package bzw. der Climate Controller im Auslieferungszustand befinden, d. h. dass keine Änderungen an der Grundkonfiguration vorgenommen wurden. Insbesondere dürfen die Verbindungsarten "HTTP" und "Telnet/SSH" nicht gesperrt sein.

7.2 HTTP-Verbindung

7.2.1 Herstellen der Verbindung

Schließen Sie das Gerät mit einem Netzwerkkabel über die Ethernet-Schnittstelle an Ihren Computer an (Abb. 74, Pos. 3).

Hinweis:

Je nach verwendetem Computer müssen Sie hierfür ein Crossoverkabel nutzen.

- Ändern Sie die IP-Adresse Ihres Computers auf eine beliebige Adresse im Bereich 192.168.0.xxx, z. B.
 192.168.0.191. Nicht zulässig ist die voreingestellte Adresse 192.168.0.190 des Geräts.
- Stellen Sie die Subnetzmaske auf den Wert 255.255.255.0.
- Schalten Sie ggf. den Proxyserver im Browser ab, um eine direkte Verbindung zum Gerät zu ermöglichen.
- Geben Sie im Browser die Adresse http://192.168.0.190 ein (Abb. 93, Pos. 1). Es wird der Anmeldedialog zur Anmeldung am Gerät angezeigt.

Abb. 93: Anmeldebildschirm bei einer HTTP-Verbindung

Melden Sie sich als Benutzer admin mit dem Kennwort admin an (Abb. 93, Pos. 2).

Es erscheint das Übersichtsfenster des Geräts (Abb. 94).

7.2.2 Ändern der Netzwerkeinstellungen

In der Regel passen Sie im Zuge der Inbetriebnahme einmalig die Netzwerkeinstellungen des Climate Controllers so an, dass sie in Ihre Netzwerkstruktur eingebunden ist.

Klicken Sie im linken Teilbereich des Übersichtsfensters (Navigationsbereich) auf den Eintrag Processing Unit (Abb. 94, Pos. 3) und im rechten Teilbereich (Konfigurationsbereich) auf die Registerkarte Configuration (Abb. 94, Pos. 4).

	word Lago	4 Lovie Lovie field PAthen: 9201637
Processing Unit	(3)	Mutakan Carkyanan Lugajay Taka Chark Gatharak Assec Carkyanan
	Cooling Package Acc (CNICIII-AC OF (CNICIII-OF OF (CNICIII-OF HOM (CNICIII-H HOM (CNICIII-H	
		Option .
		Vieland 🚺 Unit and Karline strain Vieland 🖉 Vieland
		Search
		Same Same Street Street Street
		Configuration Configuration Configuration Configuration Configuration Configuration Configuration
Paratise	from to	
31002023, 15:27:42	Vianing	Device 2 Libord Coding Package (gl. 0), Fant Speed, Lov Warn (11 N)
3110 2023, 15 27 42	Vianing	Device 2 (Lipsid Cooling Facinge) (§) (H. Fan's Speet, Low View (H) No
31103022, 15 27:42	vianing	Device 2 stiguid Cooling Records (g) 01, Find Speet Low Yeam (11 %)
3183023, 1527-62	vianep	Device 2 pupped Cooling Package (g)2 01, Pant Speed, Low Yeam (11 N)
3/10/3023, 18 27 42	Vano	Device 2 (Logist Cooling Package) (g): 01, Pack Speed, Low Years (11 %)

Abb. 94: Anpassen der TCP/IP-Einstellungen

Klicken Sie im Gruppenrahmen Network auf die Schaltfläche TCP/IP (Abb. 94, Pos. 5).

IPv4 Configuration	IPv6 Configuration
IP Address 10.201.148.57 6	IP Address 1
Netmask 255.255.255.0	IP Address 2
Gateway 10.201.148.1	Auto
DHCP Mode DHCPv4 *	Link Local fe80::3608:e1ff:feb2:1c30/64
MAC Address 34:08:e1:b2:1c:30	DHCP Mode Manual *
UNS Configuration	
Name Server 1 10.201.4.8	
Name Server 2 10.201.4.7	
DHCP Mode Manual -	
Liesteame size E1D31030	

Abb. 95: Anpassen der TCP/IP-Einstellungen

Hinweis:

- Im Folgenden wird die Einstellung für das IPv4-Protokoll detailliert beschrieben. Weiterführende Hinweise zur TCP/IP-Konfiguration finden Sie in der Montage-, Installations- und Bedienungsanleitung des IoT In terface 3124.300.
- Ändern Sie im Fenster TCP/IP Configuration im Gruppenrahmen IPv4 Configuration die IP-Adresse des Geräts auf eine im Netzwerk erlaubte Adresse ab (Abb. 95, Pos. 6).
- Stellen Sie ggf. die Netmask und das Gateway korrekt ein.
- Wählen Sie alternativ die Einstellung "DHCPv4" statt "Manual" für eine automatische IP-Vergabe.
- Klicken Sie die Schaltfläche Save an, um die Einstellungen zu speichern.

Hinweis:

- Falls die Schaltfläche Save nicht angeklickt werden kann, liegt eine Fehleingabe vor. Überprüfen und korrigieren Sie in diesem Fall zunächst Ihre Eingaben.
- Andern Sie die Netzwerkeinstellungen Ihres Computers auf die ursprünglichen Werte der IP-Adresse sowie der Subnetzmaske ab.
- Trennen Sie das Netzwerkkabel zu Ihrem Computer.
- Schließen Sie das Gerät mit einem Netzwerkkabel an Ihren Computer Ethernet-LAN an (Abb. 74, Pos. 3).

Hinweis:

Falls Sie die automatische IP-Vergabe aktiviert haben (Einstellung "DHCPv4" ist aktiviert), können Sie die IP-Adresse des Climate Controllers über die USB-C-Schnittstelle einsehen (vgl. Montage-, Installations- und Bedienungsanleitung des IoT Interface 3124.300).

7.2.3 Anpassen der Einheiten

Hinweis:

Nach jedem Anpassen der Einheiten werden alle Temperaturwerte und Durchflussmengen des Liquid Cooling Package auf Standardwerte gesetzt. Daher sollten Sie die Einheiten (einmalig) wie gewünscht einstellen und erst im Anschluss Grenzwerte festlegen. Sollen die Einheiten nachträglich geändert werden, notieren Sie sich alle Einstellwerte des LCP, so dass Sie diese manuell wiederherstellen können.

Es besteht die Möglichkeit, die Darstellung der Einheiten von "°C" in "°F" und "Liter" in "Gallon" umzustellen. Nach der Anmeldung am Liquid Cooling Package (vgl. Abschnitt 7.2.1 "Herstellen der Verbindung") wird die Web-Oberfläche zur Bedienung des Geräts angezeigt.

- Klicken Sie im linken Teilbereich des Übersichtsfensters den Eintrag Processing Unit an und im rechten Teilbereich die Registerkarte **Configuration**.
- Klicken Sie im Gruppenrahmen System die Schaltfläche Units and Languages an.
- Wählen Sie im Fenster Units and Language Configuration im Gruppenrahmen Units in der Dropdown-Liste "Temperature Format" den Eintrag "Fahrenheit" bei Voreinstellung "Celsius" bzw. umgekehrt.
- Wählen Sie in der Dropdown-Liste "Volume Format" den Eintrag "Gallon" bei Voreinstellung "Liter" bzw. umgekehrt.
- Klicken Sie die Schaltfläche Save an, um die Einstellungen zu speichern.

Hinweis:

Während die Einheiten umgeschaltet werden, schaltet das Liquid Cooling Package in den Failsafe-Betrieb.

7.2.4 LCP Configuration

Grundlegende Einstellungen des Liquid Cooling Package legen Sie im Gruppenrahmen Cooling System fest. Sie rufen hierzu über die Schaltflächen Air Configuration, Coolant Configuration bzw. General **Configuration** jeweils einen entsprechenden Dialog auf.

Für den Zugriff auf die Konfigurationseinstellungen sind "Admin"-Rechte erforderlich.

■ Klicken Sie im Gruppenrahmen **Cooling System** die gewünschte Schaltfläche an.

Vorsicht!

Änderungen an der Konfiguration dienen nur zu Service-Zwecken und zur Einstellung von wichtigen Betriebsparametern, die ausschließlich von Rittal Servicepersonal vorgenommen werden sollen.

Dialog Air Parameter Configuration

Air Parameter Configuration	ı 🗷
Control Mode	Temperature -
Control Value	Average 👻
Sampling Rate [160s]	Average
Kp [0400]	Maximum
Ki [10400]	10
Kd [0200]	0
dT [min. Fan Speed] [020°C]	5
dT [max. Fan Speed] [340°C]	15
Min. Fan Speed [1040%]	10
Max. Fan Speed [50100%]	100
Fan1	Enabled -
Fan2	Enabled -
Fan3	Enabled -
Fan4	Enabled -
Fan5	Enabled -
Fan6	Enabled -
Fan Timeout Mode	
Fan Timeout Sataoint (0, 100%)	
	50
Save Reset Cancel	

Abb. 96: Dialog Air Parameter Configuration

Legen Sie mit dem Parameter "Control Mode" fest, ob die Lüfterregelung über die Temperaturdifferenz ("Temperature") oder die Druckdifferenz "Differential Pressure") vor und hinter den im Serverschrank eingebauten Geräten erfolgen soll.

Lüfterregelung nach der Temperaturdifferenz

Parameter	Erläuterung
Control Value	Mit dieser Einstellung legen Sie fest, ob in der Betriebsart "Automatic" die Regelung der Lüfter über den Mittelwert der Server- austrittstemperatur bzw. der Druckdiffe- renz (Einstellung "Average"), über den Maximalwert (Einstellung "Maximum") oder über den Minimalwert (Einstellung "Mini- mum") erfolgt.
Sampling Rate	Abtastzeit des Reglers bei Regelung der Lüfter über die Druckdifferenz.

Kp Parameter zur Einstellung des Proportional-Anteils des PID-Regelalgorithmus bei Regelung der Lüfter über die Druckdifferenz. Die Einstellung erfolgt in Prozent. Ki Parameter zur Einstellung des Integral-Anteils des PID-Regelalgorithmus bei Regelung der Lüfter über die Druckdifferenz. Die Einstellung erfolgt in Sekunden. Kd Parameter zur Einstellung des Differenzial-Anteils bei Regelung der Lüfter über die Druckdifferenz. Die Einstellung erfolgt in Anteil pro Sekunde. dT min. Fan Bei Regelung der Lüfter über die Tempera-Speed turdifferenz: unterhalb dieser Temperaturdifferenz laufen die Lüfter auf der kleinsten Drehzahl (vgl. Parameter "Min. Fan Speed"). Voreingestellter Wert: 5. Im Bereich zwischen den Werten "dT min. Fan Speed" und "dT max. Fan Speed" findet eine lineare Lüfterregelung statt. dT max. Fan Bei Regelung der Lüfter über die Tempera-Speed turdifferenz: oberhalb dieser Temperaturdifferenz laufen die Lüfter auf der höchsten Drehzahl (100 %). Voreingestellter Wert: 15. Im Bereich zwischen den Werten "dT min. Fan Speed" und "dT max. Fan Speed" findet eine lineare Lüfterregelung statt. Min. Fan Die Lüfter laufen in den Betriebsarten "Au-Speed tomatik", "Manual" und "Minimum" mindestens mit der hier eingestellten Drehzahl. **Betriebsart "Automatic"** Bei Regelung der Lüfter über die Temperaturdifferenz: ist diese Differenz kleiner als oder gleich dem Wert "dT min. Fan Speed", laufen die Lüfter mit der hier eingestellten Mindestdrehzahl. Bei Regelung der Lüfter über die Druckdifferenz: die hier eingestellte Drehzahl ist die Mindestdrehzahl der Lüfter. Betriebsart "Minimum" Alle Lüfter laufen immer mit der hier eingestellten Mindestdrehzahl.

Parameter

Erläuterung

Betriebsart "Manual" Wird eine Drehzahl eingetragen, die kleiner

als die hier eingestellte Mindestdrehzahl ist, wird der Wert automatisch auf die Mindestdrehzahl korrigiert. Ausnahme: Bei Eingabe der Drehzahl "O %" werden die Lüfter abgeschaltet. Voreingestellter Wert: 10 %

Tab. 22: Einstellungen im Dialog Air Parameter Configuration

Tab. 22: Einstellungen im Dialog Air Parameter Configuration

7

Parameter	Erläuterung
Max. Fan Speed	Maximale Drehzahl der Lüfter. Die Lüfter laufen in den Betriebsarten "Au- tomatik", "Manual" und "Maximum" maxi- mal mit der eingestellten Drehzahl. Betriebsart "Automatic" Bei Regelung der Lüfter über die Tempera- turdifferenz: ist diese Differenz größer als oder gleich dem Wert "dT max. Fan Speed", laufen die Lüfter mit der hier einge- stellten Maximaldrehzahl. Bei Regelung der Lüfter über die Druckdif- ferenz: die hier eingestellte Drehzahl ist die Maximaldrehzahl der Lüfter. Betriebsart "Maximum" Alle Lüfter laufen immer mit der hier einge- stellten Maximaldrehzahl. Betriebsart "Manual" Wird eine Drehzahl eingetragen, die größer als die hier eingestellte Maximaldrehzahl ist, wird der Wert automatisch auf die Ma- ximaldrehzahl korrigiert.
Fan1Fan6	Bei Deaktivierung der Lüfterüberwachung wird lediglich die Überwachung der Lüfter deaktiviert. Die Lüfter laufen auch nach De- aktivierung der Überwachung weiter. So- wohl in der grafischen Darstellung auf der Web-Oberfläche als auch auf dem optio- nalen Display mit Touchfunktion werden die Lüftersymbole ausgegraut. Die Anzeige der Drehzahlwerte ändert sich auf "". In der Baumdarstellung werden die Drehzahl- werte auf "0" gesetzt und der Status des entsprechenden Lüfters wechselt auf "In- active".
Fan Timeout Mode	Mit dieser Einstellung legen Sie fest, wie die Lüfter arbeiten, wenn der Climate Control- ler sich im Notbetrieb befindet. Einstellung "Last Setpoint": Die Lüfter ar- beiten so, wie diese zuletzt im Normalbe- trieb gearbeitet haben. Einstellung "Manual Setpoint": Die Lüfter arbeiten so, wie es manuell eingestellt wur- de.
Fan Timeout Setpoint	Hier kann der Setpoint der Lüfter zwischen 0-100 % für den Fall manuell gewählt wer- den, dass der Climate Controller sich im Notbetrieb befindet,

Tab. 22: Einstellungen im Dialog Air Parameter Configuration

Lüfterregelung nach der Druckdifferenz

Als Führungsgröße wird die durch einen (oder maximal zwei) Differenzdrucksensor(en) gemessene Luftdruckdifferenz vor und hinter dem LCP im Serverschrank verwendet (Delta P-Regelung). Die Differenzdrucksensoren sind nicht im Lieferumfang enthalten und müssen separat bestellt und montiert werden (vgl. Abschnitt 5.6 "Platzierung der Drucksensoren").

Die Regelung erfolgt über einen PID-Regler, die Regelparameter (Kp, Ki, Kd) sind über den Konfigurationsdialog **Air Parameter Configuration** einstellbar. Dort kann auch dieses Regelungsverfahren generell vorgewählt werden.

Als Sollwert wird die gewünschte Druckdifferenz zwischen vor und hinter den im Serverschrank eingebauten Geräten vorgegeben.

Bei Verwendung von zwei Differenzdrucksensoren wird der Mittelwert beider Sensoren verwendet.

- Fällt **ein** Sensor aus, wird der Wert des anderen verwendet.
- Fallen beide Sensoren aus, wird auf die Delta T-Regelung umgeschaltet.

Die angeschlossenen Differenzdrucksensoren werden im Variablenbaum unter "Real Devices" verwaltet. Hier wird der aktuelle Istwert angezeigt und es sind die entsprechenden Grenzwerte für Alarme und Warnungen konfigurierbar. Die Auswertung der Grenzwerte wird entsprechend in der Status-Variablen angezeigt. Wird die Delta P-Regelung aktiviert, werden automatisch maximal die ersten beiden gefundenen Differenzdrucksensoren für die Bestimmung des Istwertes verwendet. Ist kein Differenzdrucksensor verfügbar, erfolgt eine entsprechende Information in der Status-Variablen. Das Regelverfahren wird dann auf Delta T-Regelung umgeschaltet.

Lüfter-Kalibrierung

Nach Einbau und Anschluss eines zusätzlichen Lüfters oder einem Lüftertausch (vgl. Abschnitt 5.3 "Lüftermontage") muss die maximale Drehzahl des Lüfters durch einen Kalibrierlauf automatisch ermittelt werden.

____ Hinweis:

Wird der Kalibrierlauf für einen Lüfter aus dem Zustand "Disabled" gestartet, werden nach dem Kalibrierlauf die Betriebsstunden dieses Lüfters zurückgesetzt. Das Nachkalibrieren eines Lüfters **ohne** Zurücksetzen der Betriebsstunden ist möglich, wenn vom Zustand "Enabled" auf "Calibration" gewechselt wird.

Wählen Sie für den gewünschten Lüfter im entsprechenden Parameter Fan1...Fan6 die Option "Calibration" an.

Der entsprechende Lüfter wird gestartet, über eine gewisse Zeit ein Mittelwert gebildet. Dieser Wert wird dann zyklisch mit der aktuellen Drehzahl verglichen. Stimmt die gemessene Drehzahl innerhalb gewisser Grenzen mit dem Mittelwert überein, wird der Kalibrierlauf beendet und der maximale Drehzahl im Climate Controller hinterlegt.

Weicht die gemessene Drehzahl zu stark vom Mittelwert ab, erfolgt ein neuer Kalibrierlauf. Ist dieser erfolgreich, wird nun die maximale Drehzahl im Climate Controller hinterlegt. Ist die Abweichung weiterhin zu stark, wird der Status des betreffenden Lüfters auf "Error" gesetzt und der Kalibrierlauf ebenfalls beendet.

_

Dialog Coolant Parameter Configuration

Coolant Parameter Configu	uration 🛞
Leakage Mode	Emergency Mode 👻
Sampling Rate [160s]	1
Kp [0400]	100
Ki [10400]	10
Kd [0200]	0
Valve Min. Value [050%]	10
Coolant Sensors	\checkmark
Flowmeter	\checkmark
Control Valve	\checkmark
Cp Value [10009999]	4187
Valve Timeout Mode	Last Setpoint 👻
Valve Timeout Setpoint [0100	9%] 50
Save Reset Cancel	

Abb. 97: Dialog Coolant Parameter Configuration

Parameter	Erläuterung
Leakage Mode	Hier wird eingestellt, wie der Regelkugel- hahn im Fehlerfall reagieren soll: Emergency: Das Ventil schließt im Leckagefall komplett. Die Lüfter werden für eine Dauer von 15 Sekunden abgeschaltet und die Türen des Serverschranks ggf. geöffnet. Nach Ablauf dieser Zeit geht das LCP wieder in den eingestellten Regelmodus zurück. Only Alarm: Im Leckagefall wird nur eine Alarmmeldung versendet. Die Einstellungen der Variablen "Com- mand" für die Lüfter (Full, Minimum bzw. Off) werden in beiden Modi übernommen.
Sampling Time	Abtastzeit des Reglers.
Кр	Parameter zur Einstellung des Proportio- nal-Anteils des PID-Regelalgorithmus. Die Einstellung erfolgt in Prozent.
Ki	Parameter zur Einstellung des Integral- Anteils des PID-Regelalgorithmus. Die Ein- stellung erfolgt in Sekunden.
Kd	Parameter zur Einstellung des Differenzial- Anteils. Die Einstellung erfolgt in Anteil pro Sekunde.

Tab. 23: Einstellungen im Dialog Coolant Parameter Configuration

Parameter	Erläuterung		
Valve Min. Value	Analog zur Mindestdrehzahl der Lüfter (Pa- rameter "Min. Fan Speed") kann hier für alle Betriebsarten eine ständige Öffnung des Regelkugelhahns eingestellt werden. Hier- durch wird immer ein Mindestdurchfluss gewährleistet, wodurch die Regelung spontaner auf plötzliche Leistungserhö- hungen reagieren kann. Betriebsart "Automatic" Der Regelkugelhahn ist immer mindestens auf den hier eingestellten Wert geöffnet. Ausnahme: Im Fall einer Leckage wird bei Auswahl der Einstellung "O" (= Emergency) das Ventil komplett geschlossen (vgl. Para- meter "LeakageMode"). Betriebsart "Minimum" Der Regelkugelhahn ist immer mindestens auf den hier eingestellten Wert geöffnet. Betriebsart "Manual" Wird ein Öffnungswert für den Regelkugel- hahn eingetragen, der kleiner als die hier eingestellte Mindestöffnung ist, wird der Wert automatisch auf die Mindestöffnung korrigiert.		
Coolant Sensors	Bei Deaktivierung der Temperatursensoren für den Wasservorlauf sowie den Wasser- rücklauf wird sowohl in der grafischen Dar- stellung auf der Web-Oberfläche als auch auf dem optionalen Display mit Touchfunk- tion die Darstellung ausgegraut und durch "" ersetzt. In der Baumdarstellung wer- den die Temperaturwerte auf "0" gesetzt, der Status der Variablen steht auf "inacti- ve".		
Flowmeter	Bei Deaktivierung des Durchflussmessers wird sowohl in der grafischen Darstellung auf der Web-Oberfläche als auch auf dem optionalen Display mit Touchfunktion der Durchflussmesser ausgegraut und durch "" ersetzt. In der Baumdarstellung wird der Wert der Cooling Capacity auf "O" und der Status der Flowrate auf "inactive" ge- setzt.		
Control Val- ve	Bei Deaktivierung des Regelkugelhahns wird sowohl in der grafischen Darstellung auf der Web-Oberfläche als auch auf dem optionalen Display mit Touchfunktion der Regelkugelhahn ausgegraut und durch " " ersetzt. In der Baumdarstellung wird der Wert auf "100" gesetzt. Ebenso ändert sich der Status des Control Valve auf "inactive".		
Cp Value	Spezifische Wärmekapazität des Kühlme- diums. Dieser Wert muss nur bei Änderung des verwendeten Kühlmediums angepasst werden.		

Tab. 23: Einstellungen im Dialog Coolant Parameter Configuration

	Parameter	Erläuterung	Parameter	Erläuterun	
	Valve Timeout Mode	Mit dieser Einstellung legen Sie fest, wie der Regelkugelhahn arbeitet, wenn der Cli- mate Controller sich im Notbetrieb befin- det. Einstellung "Last setpoint": der Regelku- gelhahn ist so weit geöffnet, wie dies zu- letzt im Normalbetrieb war. Einstellung "Manual Setpoint": der Regel- kugelhahn ist so weit geöffnet, wie es ma- nuell eingestellt wurde.	Setpoint by Display	Freigabeop Servereintri nale Display Cooling Pad dienung im Erlaubt: Sollwerteing mit Touchfu Gesperrt: Sollwerteing	
-	Valve Timeout Set- point	Hier kann eine manuelle Einstellung des Regelkugelhahns für den Fall vorgenom- men werden, dass der Climate Controller sich im Notbetrieb befindet.		mit Touchtu "Setpoint" a tings" wird i chen zum V Bildschirms	
	Tab 22. Finetalli	Inden im Dialog Coolant Parameter Configu-		blendet.	

Tab. 23: Einstellungen im Dialog Coolant Parameter Configuration

Hinweis:

- Die standardmäßig hinterlegten Werte für den PID-Regelalgorithmus sollten nur in Ausnahmefällen verändert werden, da die jeweiligen Anteile sich sowohl auf die Geschwindigkeit als auch auf die Genauigkeit der Regelung auswirken.
- Für Schäden, die durch falsche Parametrierung des PID-Reglers entstehen, trägt Rittal keine Verantwortung.

Dialog General Parameter Configuration

Abb. 98: Dialog General Parameter Configuration

Parameter	Erläuterung
Control Mo- des Save	Ist diese Option aktiviert, werden die einge- stellten Regelmodi für die Lüfter- und die Wassersteuerung nach einem Neustart des Systems automatisch wieder über- nommen. Ist diese Option deaktiviert, werden die Re- gelmodi nach einem Neustart des Systems auf die Einstellung "Automatic" gesetzt.

Tab. 24: Einstellungen im Dialog General Parameter Configuration

Parameter	Erläuterung
Setpoint by Display	Freigabeoption für die Sollwerteingabe der Servereintrittstemperatur über das optio- nale Display mit Touchfunktion am Liquid Cooling Package (vgl. Abschnitt 8.2.3 "Be- dienung im Stand-Alone-Betrieb"): Erlaubt: Sollwerteingabe über das optionale Display mit Touchfunktion möglich. Gesperrt: Sollwerteingabe über das optionale Display mit Touchfunktion gesperrt. Der Eintrag "Setpoint" auf der Bildschirmseite "Set- tings" wird rot dargestellt und die Schaltflä- chen zum Verstellen des Sollwerts auf der Bildschirmseite "Setpoint" werden ausge- blendet.
Door Open- ing by Dis- play	Freigabeoption für das Entriegeln der Tü- ren bei installierter "Door Control Unit" (au- tomatische Türöffnung) über das optionale Display mit Touchfunktion am Liquid Cooling Package (vgl. Abschnitt 8.2.3 "Be- dienung im Stand-Alone-Betrieb") bei Ver- wendung der Firmwareversion < 3.03.00: Erlaubt: Öffnen der Türen über das optionale Dis- play mit Touchfunktion möglich. Gesperrt: Öffnen der Türen über das optionale Dis- play mit Touchfunktion nicht möglich. Der Eintrag "Doors" auf der Bildschirmseite "Settings" (Abb. 107) wird rot dargestellt, ebenso die Schaltflächen zum Öffnen der Türen auf der Bildschirmseite "Doors" (Abb. 108).

Tab. 24: Einstellungen im Dialog General Parameter Configuration

7.2.5 Einstellungen

Alle weiteren Einstellungsmöglichkeiten des Liquid Cooling Package sind im Abschnitt 8 "Bedienung" beschrieben.

8 Bedienung

8.1 Beschreibung der Bedien- und Anzeigeelemente

8.1.1 Hardware der Regeleinheit des Liquid Cooling Package

Die Regeleinheit des Liquid Cooling Package bildet der Climate Controller. Dieser liefert und verarbeitet Istwerte zu Server-In- und Server-Out-Temperaturen, Ist-Werte zu den Drücken vor und hinter dem Wärmetauscher sowie Istwerte zu Durchfluss, Ventilstellung und Temperaturen des kühlmediumseitigen Vor- und Rücklaufs. Ventil und Lüfter werden nach den gemessenen Istwerten geregelt.

Abb. 99: Climate Controller

Legende

- 1 Anschluss CMC-Sensoren
- 2 SET-Taster zum Quittieren
- 3 RESET-Taster für Hardwarereset (Werkseinstellung)
- 4 Status LED
- 5 USB-C-Schnittstelle für Service
- 6 Netzwerkschnittstelle ETH1
- 7 Netzwerkschnittstelle ETH2
- 8 USB-Schnittstelle als externer Speicher
- 9 Anschlusspunkt Displaykabel
- 10 Ein-/Ausschalter Lüfter 1/2
- 11 Ein-/Ausschalter Lüfter 3/4
- 12 Ein-/Ausschalter Lüfter 5/6

Hinweis:

Der Anschluss für CMC-Sensoren (Pos. 1) sowie die beiden Netzwerkschnittstellen werden mit entsprechenden Kabeln in den Rückbereich des LCP verlegt, so dass der eigentliche Anschluss dort erfolgt. In die Frontseite des Climate Controllers sind folgende Bedien-und Anzeigeelemente eingelassen:

Bedien- und Anzeigeelement	Erläuterung
SET-Taster	Diese Taste dient zum Bestätigen von Warnungen und Alarmen.
Multi-LED zur Status-	Grün: Sammelmeldung Status "OK".
anzeige (Dauerlicht)	Orange: Sammelmeldung Status "Warnung".
	Rot: Sammelmeldung Status "Alarm".
Multi-LED zur Status- anzeige (zyklisch)	Grün-Orange-Rot: Mindestens ein neues Device am CAN-Bus wurde erkannt (Status "Detected").
Multi-LED zur Status- anzeige (abwechselnd)	Rot-Blau: Mindestens ein Device am CAN-Bus wurde entfernt oder kann nicht mehr über CAN-Bus erreicht werden (Status "Lost").
Multi-LED zur Status-	Blau: Mindestens für ein Device wurde die Position am CAN-Bus geändert (Status "Changed").
anzeige	Rot: Update Vorgang läuft (sog. Heartbeat, abwechselnd lang und kurz).
	Weiß: Update-Vorgang eines oder mehrerer Sensoren läuft.

Tab. 25: Bedien- und Anzeigeelemente am Climate Controller

Der potenzialfreie Relaisausgang wird zur Klemmleiste X6 im hinteren oberen Bereich des Liquid Cooling Package geführt. Dort kann eine externe Signalquelle zur Alarm-Signalisierung angeschlossen werden.

- Beachten Sie hierbei die Pin-Belegung der Klemmleiste X6 (Abb. 139).
- Konfigurieren Sie nach dem Anschluss das Alarmrelais (vgl. Montage-, Installations- und Bedienungsanleitung des IoT Interface 3124.300).

Neben den eingebauten Sensoren kann über die CAN-Busschnittstelle eine breite Palette von Sensoren, Aktoren und Systemen zur Zugangsüberwachung angeschlossen werden. Eine detaillierte Auflistung über das gesamte Zubehörprogramm finden Sie auf der im Abschnitt 15 "Zubehör" angegebenen Internetadresse.

Warnung! Verletzungsgefahr!

Vor dem Einbau von zusätzlichen Komponenten, wie Sensoren u. ä., muss das LCP an der Trennvorrichtung vollständig ausgeschaltet und gegen unbeabsichtigtes Einschalten gesichert werden.

Vorsicht! Verletzungsgefahr!

Beim Einbau von zusätzlichen Komponenten, wie Sensoren u. ä., besteht Verletzungsgefahr durch scharfe Kanten im Innenraum des LCP. Tragen Sie die persönliche Schutzausrüstung!

8.2 Beschreibung der Bedienung

8.2.1 Allgemeines

Der Climate Controller des Liquid Cooling Package hat folgende Aufgaben:

- Abfrage aller Messwerte (Temperaturen, Drücke, Drehzahlen, Durchfluss, Stromaufnahme usw.).
- Auswertung aller Messwerte und Erzeugen von Alarmund Warnmeldungen.
- Errechnen der Wärmeleistung aus der Vor- und Rücklauf-Temperatur sowie der ermittelten Kühlmediumdurchflussmenge.
- Regelung der Lufttemperatur des Serverschrankes durch Regelung der Lüfterdrehzahl und der Kühlmediummenge durch den Wärmetauscher.
- Einstellen der Solltemperatur für die eingeblasene Kaltluft (Werkseinstellung 20 °C).
- Ansteuerung eines optionalen Displays mit Touchfunktion über eine RS232-Schnittstelle.
- Anzeige der Messwerte und Einstellung von Parametern und Sollwerten über die Web-Oberfläche.
- Abfrage der Sensor- und Einstellwerte über verschiedene Protokolle.

Die gelieferten Messwerte werden vom Climate Controller ausgewertet und es werden eventuelle Warn- und Alarmmeldungen erzeugt. Wenn eine neue Warnung oder ein neuer Alarm auftritt, wird dies durch die Multi-LED am Climate Controller angezeigt, gleichzeitig wird das Alarmrelais geschaltet. Über das optional angeschlossene Display mit Touchfunktion wird die genaue Störungsursache als Alarm- oder Warnmeldungen im Klartext angezeigt (vgl. Abschnitt 10.2 "Meldungen am Display").

Hinweis:

Nach dem erstmaligen Anschließen oder nach Reparaturarbeiten kann es vorkommen, dass sich das Liquid Cooling Package im Notbetrieb befindet.

Um das Gerät in den Normalbetrieb (Regelbetrieb) zu schalten, betätigen Sie einmal kurz den SET-Taster (Abb. 99, Pos. 10).

Hinweis:

Im Notbetrieb wird die Kühlung des Geräts auch bei Störungen im Gerät sichergestellt. Alle Lüfter laufen dann mit 100 % Leistung und der Regelkugelhahn öffnet vollständig (vgl. Abschnitt 18 "Frequently Asked Questions (FAQ)").

Aufbau des Temperatur-Regelkreises

Die von den drei Temperatursensoren am Wärmetauscher gelieferten Ist-Temperaturwerte der Kaltluft auf der Servereintrittsseite (IT Supply) werden zur Regelung der in den Serverschrank geblasenen Luft verwendet. Dazu wird aus diesen Ist-Temperaturwerten der Mittelwert gebildet. Die Regelung vergleicht nun ständig diese (gemittelte) Ist-Temperatur mit der eingestellten Soll-Temperatur. Alternativ zum Mittelwert kann die Regelung auch auf die minimale oder die maximale Temperatur erfolgen. Dies lässt sich auf der Website einstellen. Durch Vergleich der Ist-Temperatur mit der Soll-Temperatur wird über Öffnen und Schließen des Regelkugelhahns versucht, die Temperatur konstant zu halten. Erst wenn die Ist-Temperatur unter den Wert "Soll-Temperatur" fällt, wird der Regelkugelhahn dauernd geschlossen (bzw. auf den im Parameter "ValveMin value" hinterlegten Wert eingestellt), d. h. es fließt kein kaltes Kühlmedium mehr durch den Wärmetauscher. Zusätzlich wird durch die Temperaturdifferenz zwischen der Ist-Temperatur (IT Supply) und der Ist-Temperatur auf der Serveraustrittsseite abgesaugten Luft (IT Return) die notwendige Lüfterdrehzahl ermittelt und entsprechend eingeregelt. Optional kann zur Regelung der Lüfterdrehzahlen auch die Druckdifferenz genutzt werden. Die Temperaturwerte der Sensoren auf der Serveraustrittsseite können entweder gemittelt werden oder es wird die Minimal- oder Maximaltemperatur genutzt (vgl. Abschnitt 7.2.4 "LCP Configuration"). Die jeweilige Soll-Drehzahl für die Lüfter und die Stellung des Regelkugelhahns wird über den CAN-Bus an die angeschlossenen Regeleinheiten gesendet.

Zur Überwachung weiterer physikalischer Parameter des Liquid Cooling Package können am Climate Controller zusätzlich bis zu 16 Standard-Sensoren angeschlossen werden. Dazu schließt man die Sensoren am ersten CAN-Bus-Anschluss an der Rückseite des Geräts (Abb. 99, Pos. 1) an und konfiguriert sie über die Web-Oberfläche. Informationen über eine breite Palette an Zusatzsensoren finden Sie im Abschnitt 15 "Zubehör".

8.2.2 Quittieren von Meldungen

Es gibt generell drei verschiedene Möglichkeiten, Meldungen zu quittieren:

- 1. Durch kurzes Drücken des SET-Tasters am Climate Controller (Abb. 99, Pos. 2). Dies bestätigt alle Alarmmeldungen gleichzeitig.
- Durch Anwahl der Meldung mit der rechten Maustaste in der Meldungsanzeige und Klicken mit der linken Maustaste auf den Eintrag "Acknowledge Alarm" bzw. "Acknowledge Devices" im Kontextmenü.

Ist eine Alarmmeldung angewählt, wird mit "Acknowledge Alarm" nur die aktuell ausgewählte Meldung bestätigt.

Ist eine Meldung zu einer Konfigurationsänderung angewählt, werden mit "Acknowledge Devices" alle entsprechenden Meldungen gemeinsam bestätigt.

 Durch Klicken mit der rechten Maustaste auf den Eintrag einer Komponente im Konfigurationsbereich und Klicken mit der linken Maustaste auf den Eintrag "Acknowledge Alarms" bzw. "Acknowledge All Devices" im Kontextmenü.

Hiermit können anstehende Alarmmeldungen für diese Komponente bzw. alle Konfigurationsänderungen bestätigt werden.

8.2.3 Bedienung im Stand-Alone-Betrieb

Im Stand-Alone-Betrieb kann die Bedienung des Liquid Cooling Package über das Display mit Touchfunktion, das optional an der vorderen Tür angebracht ist, erfolgen. Das Display mit Touchfunktion kann als Zubehör bestellt werden (vgl. Abschnitt 15 "Zubehör").

Abb. 100: Display mit Touchfunktion

Die Benutzeroberfläche des Displays mit Touchfunktion erlaubt mit Hilfe software-gesteuerter Schaltflächen die Navigation zwischen den einzelnen Menüpunkten der Steuerung des Liquid Cooling Package.

8 Bedienung

Abb. 101: Bildschirmseite "Home"

Auf der Hauptseite wird der Mittelwert aus den 3 Servereintrittstemperaturen der Sensoren am Wärmetauscher ausgegeben sowie die aktuelle Kühlkapazität.

In der Titelzeile jeder Bildschirmseite auf dem Display wird immer der aktuelle Status des Liquid Cooling Package, der Name der Bildschirmseite sowie der aktuelle Regelmodus der Lüfter- sowie der Kühlmediumsteuerung angezeigt.

Je nach aktuellem Status des Liquid Cooling Package können hier auch Warn- (Abb. 102) bzw. Alarmmeldungen (Abb. 103) ausgegeben werden. Auf der Bildschirmseite "Alarm list" (Abb. 113) können Details zu den anstehenden Meldungen eingesehen werden.

Abb. 102: Bildschirmseite "Home" mit Warnmeldung

Abb. 103: Bildschirmseite "Home" mit Alarmmeldung

Abb. 104: Bildschirmseite "Details"

Auf der Bildschirmseite "Details" werden folgende Informationen angezeigt:

- 3 x Serveraustrittstemperatur der Sensoren (Server-Out)
- 3 x Servereintrittstemperatur der Sensoren (Server-In)
- Drehzahl der einzelnen L
 üftermodule in % der Maximaldrehzahl (Rpm)
- Kühlmediumvor- und Kühlmediumrücklauftemperatur in °C
- Kühlmediumdurchfluss in I/min

Abb. 105: Bildschirmseite "Water-Info"

Auf der Bildschirmseite "Water-Info" werden folgende Informationen angezeigt:

- Kühlmediumdurchfluss in I/min (Waterflow)
- Iststellung des Regelkugelhahns (Control Valve))
- Kühlmediumvor- (Water In) und Kühlmediumrücklauftemperatur (Water Out) in °C

Abb. 106: Bildschirmseite "Air-Info"

Auf der Bildschirmseite "Air-Info" werden folgende Informationen angezeigt:

- 3 x Serveraustrittstemperatur der Sensoren (Server-Out)
- 3 x Servereintrittstemperatur der Sensoren (Server-In)

Abb. 107: Bildschirmseite "Settings"

Auf der Bildschirmseite "Settings" gibt es folgende Auswahlmöglichkeiten:

- Door opening (bei installierter Option "Automatische Türöffnung")
- Setpoint
- Fanregistry

Durch Anwahl eines der Punkte öffnet sich jeweils eine neue Bildschirmseite.

Hinweis:

Um einen Zugriff durch unbefugte Personen zu verhindern, kann der Zugriff auf die Einstellmöglichkeiten für den Sollwert der Servereintrittstemperatur sowie das Öffnen der Türen gesperrt werden. Nähere Informationen finden Sie im Abschnitt 7.2.4 "LCP Configuration".

Abb. 108: Bildschirmseite "Doors"

Auf der Bildschirmseite "Doors" werden immer die Schaltflächen von "1" bis "0" angezeigt. Die Zuordnung der Schaltflächen zu den Türmagneten erfolgt über ein sog. Virtual Device (vgl. Abschnitt 8.7 "Door Opening"). Nach Anwahl der Schaltfläche, z. B. "1", werden die Türmagnete für den Türausgang, der für diese Schaltfläche hinterlegt ist, für 10 Sekunden ausgeschaltet und die Tür öffnet sich. Nach Ablauf dieser Zeit wird der Magnet wieder bestromt.

Abb. 109: Bildschirmseite "Setpoint"

Auf der Bildschirmseite "Setpoint" legen Sie den Sollwert für die Servereintrittstemperatur fest.

- Erhöhen Sie den angezeigten Wert durch Drücken der Taste "+" bzw. verringern Sie den Wert durch Drücken der Taste "–".
- Bestätigen Sie den Wert durch Drücken der Taste "✓".
- Um die Änderung nicht zu übernehmen, drücken Sie die Taste "X".

Nach Anwahl des Eintrags "Fanregistry" öffnet sich zunächst die Bildschirmseite "Keypad".

Abb. 110: Bildschirmseite "Keypad"

Hier gibt es folgende Auswahlmöglichkeiten:

- Ziffernblock (0-9)
- A (Acknowledge)
- C (Correcture)
- Geben Sie die Seriennummer über die Tasten des Ziffernblocks ein. Die Seriennummer können Sie auf der Bildschirmseite "Info" (Abb. 112) im Eintrag "Serial Nr." einsehen.
- Bestätigen Sie Ihre Eingabe mit der Taste "A" (Acknowledge).

Es öffnet sich die Bildschirmseite "Fanregistry".

Hinweis:

Die Eingabe der Seriennummer bleibt für 10 Minuten gespeichert. Anschließend muss der Bediener diese erneut eingeben, wenn er wieder auf die Bildschirmseite "Fanregistry" zugreifen möchte.

Abb. 111: Bildschirmseite "Fanregistry"

Auf der Bildschirmseite "Fanregistry" aktivieren bzw. deaktivieren Sie die Überwachung einzelner Lüfter.

- Aktivieren Sie die Überwachung des jeweiligen Lüfters durch Drücken auf das grau dargestellte Lüftersymbol bzw. deaktivieren Sie die Überwachung durch Drücken auf das blau dargestellte Lüftersymbol.
- Bestätigen Sie die Einstellung durch Drücken der Taste "✔".

Alarm	Info		🛞 Autom	natic	∾.	Automatic
IP - Addr HW Ver. SW Ver. SW Ver. Serial Nr Name Contact Location Dewpoin	ress CMC CMC Display	192.168.0.19 0.0.0 V3.15.00 V3.02.04 12345 Default Nam Default Cont Default Loca Emergency	90 e act ition		Ala	ırm List
â		٥٨٥	×	•)	i

Abb. 112: Bildschirmseite "Info"

Auf der Bildschirmseite "Info" werden Detailinformationen, wie z. B. Versionsnummern, zum Liquid Cooling Package angezeigt.

Durch Drücken der Taste "Alarm List" öffnet sich die Bildschirmseite "Alarm List". Hier werden alle anstehenden Alarmmeldungen im Klartext angezeigt.

Abb. 113: Bildschirmseite "Alarm List"

Hinweis:

Ist der Dewpoint Mode "Emergency" gewählt, dann erscheint in der Kopfzeile ein Tropfen, um zu signalisieren, dass die Lüfterdrehzahl aktuell beeinflusst wird, um das entstandene Kondensat sicher abzuleiten.

Hinweis:

Erweiterte Einstellmöglichkeiten sind mit dem Anschluss des Liquid Cooling Package an ein Netzwerk möglich (vgl. Abschnitt 8.3 "Erweiterte Möglichkeiten durch den Anschluss des LCP an ein Netzwerk").

8.2.4 Automatische Türöffnung LCP Rack

In Verbindung mit den LCP-Kühlsvstemen kann unter bestimmten Voraussetzungen eine automatische Türöffnung sinnvoll sein. Hierbei werden die Türen des Systems im Normalfall geschlossen gehalten und im Bedarfsfall über einen Mechanismus geöffnet.

Mögliche Einsatzfälle:

Löschung

In existierenden Rechenzentren sind sehr oft bereits bestehende Raumlöschanlagen installiert. Bei Verwendung rackbasierter High-Density-Kühlung in geschlossenen Schränken kann im Falle einer auftretenden Raumlöschung das Löschgas nicht ins Rackinnere gelangen. Werden die Türen bei Bedarf automatisch geöffnet, erfolgt die Durchströmung des Schrankes mit Löschgas. Notkühlung

Grundsätzlich kann durch die alternierende Installation von LCPs und Racks eine Redundanz bzgl. der Kühlung realisiert werden (Abb. 18). Ist diese Aufstellungsart nicht möglich, steigt die Schrankinnentemperatur z. B. bei Ausfall der Kühlmediumversorgung innerhalb kurzer Zeit stark an (z. B. bei 15 kW Verlustleistung in ca. 90 s von 22 °C auf 32 °C). Der Anstieg der Lufteintritts-

temperatur hängt jedoch stark von der Dichtigkeit des Serverracks ab.

Durch das automatische Öffnen der Türen kann eine Notkühlung realisiert werden. Hierzu ist jedoch eine Klimatisierung des Aufstellungsraumes mit entsprechender Kapazität notwendig.

Es gibt folgende Möglichkeiten der automatischen Türöffnung:

Perforierte Fronttür des Serverracks in Verbindung mit einer Glas- oder Stahlblechrücktür des Schrankes

Im Bedarfsfall wird nur die Rücktür des Schrankes automatisch geöffnet. Die Luft gelangt über die perforierte Fronttür ins Schrankinnere, durchströmt das eingebaute Equipment und verlässt das System über die geöffnete Schrankrücktür. Hierbei ist es notwendig, dass die Lüfter des LCPs ausgeschaltet werden, da ansonsten im Fall der Notkühlung Warmluft vor die 19"-Ebene geblasen wird.

Bei Nutzung dieser Variante, egal ob zur Löschung oder Notkühlung, muss eine Klimatisierung des Aufstellungsraumes (ASHRAE-Bedingungen, 22 °C, 50 % rel.

Feuchte) erfolgen. Wird diese Ausführung zur Notkühlung verwendet, können auch höhere Verlustleistungen im Serverrack abgeführt werden.

Bei dieser Variante wird der Fluchtweg nur auf der Serverrackrückseite blockiert. Durch die geöffnete Rücktür ist der Zugang für unbefugtes Personal möglich. Die separate Trennung zwischen Kühlung und Rack ist aufgehoben. Geschlossene Fronttür (Glas-/Stahlblech) in Verbindung mit geschlossener Rücktür (Glas-/Stahlblech) des Serverracks

Im Bedarfsfall werden Front- und Rücktür des Schrankes automatisch geöffnet. Die Luft gelangt ungehindert ins Schrankinnere, durchströmt das eingebaute Equipment und verlässt das System über die geöffnete Schrankrücktür. Hierbei ist es notwendig, dass die Lüfter des LCPs ausgeschaltet werden, da ansonsten im Fall der Notkühlung Warmluft vor die 19"-Ebene geblasen wird.

Bei Nutzung dieser Variante, egal ob zur Löschung oder Notkühlung, muss eine Klimatisierung des Aufstellungsraumes (ASHRAE-Bedingungen, 22 °C, 50 % rel. Feuchte) erfolgen.

Wird diese Ausführung zur Notkühlung verwendet, können auch höhere Verlustleistungen im Serverrack abgeführt werden.

Bei dieser Variante wird der Fluchtweg auf der Vorderund Rückseite des Serverracks blockiert. Durch die geöffnete Front- und Rücktür ist der Zugang für unbefugtes Personal möglich. Die separate Trennung zwischen Kühlung und Rack ist aufgehoben.

Sollte das eingesetzte System über eine automatische Türöffnung verfügen, muss dies über die LCP-Software aktiviert werden.

8 Bedienung

8.3 Erweiterte Möglichkeiten durch den Anschluss des LCP an ein Netzwerk

Durch den Anschluss des Climate Controllers des Liquid Cooling Package an ein Netzwerk lassen sich verschiedene Messwerte und Warn- bzw. Alarmmeldungen abfragen und weiterverarbeiten (z. B. über Web-Browser, SNMP usw.). Des Weiteren können verschiedene Werte über das Netzwerk eingestellt und an den Climate Controller gesendet werden.

Der Netzwerkanschluss des Climate Controller wird im Liquid Cooling Package zu einer Buchse im hinteren, oberen Bereich des Geräts geführt.

Zum Anschluss an ein Netzwerk verbinden Sie die Buchse (Abb. 74, Pos. 2) des Climate Controllers mit einer freien Buchse an einem Netzwerkzugang.

■ Nutzen Sie hierfür ein entsprechendes Netzwerkkabel. Werkseitig ist das Liquid Cooling Package auf die IP-Adresse 192.168.0.190 eingestellt (vgl. Abschnitt 7.2 "HTTP-Verbindung").

8.4 Generelle Bedienung

8.4.1 Aufbau der Bildschirmseiten

Nach der Anmeldung am Liquid Cooling Package (vgl. Abschnitt 7.2.1 "Herstellen der Verbindung") wird die Web-Oberfläche zur Bedienung des Geräts angezeigt. Prinzipiell ist die Bildschirmseite in vier verschiedene Bereiche unterteilt:

- 1. Oberer Bereich: Anzeige genereller Informationen zum Gerät, Ändern des Passworts und Abmelden des angemeldeten Benutzers (vgl. Abschnitt 8.4.7 "Abmelden und Ändern des Passworts").
- Linker Bereich (Navigationsbereich): Auswahl des Gesamtsystems bzw. der jeweiligen Komponente, für die die Informationen im rechten Teil des Bildschirms angezeigt werden sollen (vgl. Abschnitt 8.4.2 "Navigationsbereich im linken Bereich").
- 3. Rechter Bereich (Konfigurationsbereich): Anzeige von sechs Registerkarten (vgl. Abschnitt 8.4.3 "Registerkarten im Konfigurationsbereich") mit Eingabemöglichkeit aller Einstellungen.
- 4. Unterer Bereich: Anzeige von Meldungen (vgl. Abschnitt 8.4.4 "Meldungsanzeige").

Hinweis:

In der vorliegenden Dokumentation werden durchgängig englische Screenshots gezeigt. Auch in den Beschreibungen zu den einzelnen Parametern auf der Website des Liquid Cooling Packages werden die englischen Begriffe verwendet. Je nach eingestellter Sprache können die Anzeigen auf der Website hiervon abweichen (vgl. Montage-, Installations- und Bedienungsanleitung des IoT Interface 3124.300).

Abb. 114: Aufbau der Bildschirmseiten

Legende

1

- Generelle Informationen
- 2 Navigationsbereich
- 3 Konfigurationsbereich mit Registerkarten
- 4 Meldungsanzeige

8.4.2 Navigationsbereich im linken Bereich

Im Navigationsbereich der Bildschirmseite wird das Gesamtsystem inkl. aller installierten Komponenten in Form einer Baumansicht dargestellt.

An oberster Stelle des Navigationsbereichs steht die Processing Unit, sprich das Gesamtsystem. Unterhalb des Gesamtsystems werden die Untergruppen "Virtual Devices" und "Real Devices" angezeigt. Unter "Real Devices" werden der Climate Controller, das Liquid Cooling Package selbst sowie die daran hardwaremäßig installierten Geräte und Sensoren aufgelistet.

Jedes Gerät kann verschiedene Status annehmen. Um den aktuellen Status schnell erkennen zu können, wird das Symbol vor dem jeweiligen Gerät farbig markiert:

Symbol	Erläuterung
	Status "OK". Es stehen keine Warn- oder Alarmmeldungen an.
	Status "Warnung". Es steht mindestens eine Warnmeldung an.
	Status "Alarm". Es steht mindestens eine Alarmmeldung an.
	Status "OK". Durch das zusätzliche Informati- onszeichen wird angezeigt, dass weiterführen- de Statusinformationen angezeigt werden können. Dieses Symbol wird nur dann ange- zeigt, wenn der angemeldete Benutzer zumin- dest lesenden Zugriff auf die Daten des jeweiligen Geräts hat.
4	Status "Detected". Der Sensor wurde neu hin- zugefügt und noch nicht bestätigt. Dieser Sen- sor muss noch durch Betätigen des SET- Tasters am Climate Controller oder über die Web-Oberfläche bestätigt werden.

Tab. 26: Symbole zur Statusanzeige

Symbol	Erläuterung
×	Status "Lost". Die Kommunikation zu einem Sensor ist nicht mehr möglich. Die Verbindung muss überprüft werden. Alternativ kann der Sensor auch durch Bestätigen abgemeldet werden.
٢	Status "Changed". Die Reihenfolge der Senso- ren wurde geändert und noch nicht bestätigt. Diese Konfigurationsänderung muss noch durch Betätigen des SET-Tasters am Climate Controller oder über die Weboberfläche bestä- tigt werden.

Tab. 26: Symbole zur Statusanzeige

8.4.3 Registerkarten im Konfigurationsbereich

Im rechten Teil der Bildschirmseite werden sieben Registerkarten angezeigt:

- 1. Monitoring: Aktuelle Daten des Liquid Cooling Package bzw. der angeschlossenen Geräte (vgl. Abschnitt 8.5 "Registerkarte Monitoring").
- 2. Configuration: Konfiguration von grundlegenden Einstellungen (vgl. Abschnitt 8.6 "Registerkarte Configuration").
- Logging: Meldungsarchiv zum Liquid Cooling Package bzw. den angeschlossenen Geräten (vgl. Montage-, Installations- und Bedienungsanleitung des IoT Interface 3124.300).
- Tasks: Erstellen von Verknüpfungen verschiedener Werte und zugehöriger Aktionen (vgl. Abschnitt 8.8 "Tasks")
- 5. Charts: Diagramme zum zeitlichen Verlauf von Variablenwerten (vgl. Montage-, Installations- und Bedienungsanleitung des IoT Interface 3124.300).
- Dashboards: Anlegen von verschiedenen Ansichten in Form von Dashboards (vgl. Montage-, Installations- und Bedienungsanleitung des IoT Interface 3124.300).
- 7. Access Configuration: Konfiguration von Zugangsberechtigungen für angeschlossene Zutrittskontrollsysteme der Serverschranktüren (optional).

Der Inhalt der Registerkarten **Monitoring** und **Configuration** hängt hierbei davon ab, ob im linken Teil der Bildschirmseite das Gesamtsystem (Eintrag "Processing Unit") oder eine einzelne Komponente, z. B. Eintrag "Liquid Cooling Package", angewählt wurde.

8.4.4 Meldungsanzeige

Im unteren Bereich der Bildschirmseite werden aktuell anstehende Meldungen angezeigt. Die Meldungsanzeige ist folgendermaßen aufgebaut:

- 1. Timestamp: Datum und Uhrzeit, wann der Fehler aufgetreten ist (Abb. 115, Pos. 1).
- 2. Severity: Schwere des aufgetretenen Fehlers. Es wird unterschieden zwischen Warnungen ("Warning") und Alarmen ("Alarm") (Abb. 115, Pos. 2).

3. Message: Fehlermeldung im Klartext (Abb. 115, Pos. 3).

Abb. 115: Aufbau der Meldungsanzeige

Legende

- 1 Datum und Uhrzeit
- 2 Fehlerklasse
- 3 Fehlermeldung im Klartext
- 4 Komponente mit Fehlermeldung
- 5 Komponente
- 6 Parameter

Zusätzlich werden aufgetretene Fehler folgendermaßen angezeigt:

- Linker Bereich (Navigationsbereich): Das Symbol vor der Komponente, an der der Fehler aufgetreten ist, wird im Navigationsbereich bei einer Alarmmeldung rot, bei einer Warnmeldung gelb eingefärbt (Abb. 115, Pos. 4).
- Rechter Bereich (Konfigurationsbereich): Auf der Registerkarte Monitoring wird die gesamte Komponente sowie der spezielle Parameter, für den die Warnung bzw. der Alarm anliegt, rot bzw. gelb eingefärbt (Abb. 115, Pos. 5 und 6).
- Die Multi-LED an der Front des Climate Controllers leuchtet dauerhaft rot bzw. orange.
- Je nach Einstellungen schaltet das Alarmrelais.

Wenn die Ursache einer Fehlermeldung behoben wurde, kann die zugehörige Meldung automatisch aus der Meldungsanzeige gelöscht werden. Auch kann der Status der jeweiligen Komponente wieder zurückgesetzt werden und alle weiteren durch den Fehler ausgelösten Anzeigen können verschwinden. Dies hängt aber von der gewählten Alarmkonfiguration ab (vgl. Montage-, Installations- und Bedienungsanleitung des IoT Interface 3124.300). Ggf. bleiben Fehlermeldungen und der Status auch so lange in der Übersicht erhalten, bis sie über den SET-Taster am Climate Controller quittiert wurden (vgl. Abschnitt 8.2.2 "Quittieren von Meldungen").

Wird am Gerät eine dauerhafte Konfigurationsänderung vorgenommen, z. B. ein neuer Sensor am Climate Controller angeschlossen, so wird dies ebenfalls als Fehlermeldung vom Typ "Alarm" in der Meldungsanzeige ausgegeben. Zusätzlich blinkt in diesem Fall die Multi-LED in der Front des Climate Controllers zyklisch grün – orange – rot. Eine solche Konfigurationsänderung wird erst dann aus der Meldungsanzeige gelöscht, wenn diese durch den Bediener bestätigt wurde (vgl. Abschnitt 8.2.2 "Quittieren von Meldungen").

Beispiel: Erhöhter Temperaturwert

Wenn an dem im Climate Controller integrierten Temperatursensor eine Temperatur gemessen wird, die über dem hinterlegten Wert "SetPtHighWarning" liegt, wird eine Warnmeldung ausgegeben.

Folgende Änderungen ergeben sich in diesem Fall in der Darstellung:

- Das Symbol vor der Komponente im Navigationsbereich wird gelb eingefärbt.
- Auf der Registerkarte Monitoring werden die gesamte Komponente sowie die Zeilen "Temperature" und "Status" gelb hinterlegt. Außerdem wird hier die Warnmeldung "High Warn" ausgegeben.
- In der Meldungsanzeige erscheint die entsprechende Warnmeldung.
- Wenn die Temperatur wieder unter den Wert "SetPtHighWarning" zzgl. des Hysterewerts (vgl. Abschnitt 19 "Glossar") sinkt, hängt es von der Alarmkonfiguration ab, ob die Meldung automatisch aus der Meldungsanzeige gelöscht wird und die zugehörigen Statusanzeigen wieder zurückgesetzt werden (vgl. Montage-, Installations- und Bedienungsanleitung des IoT Interface 3124.300).

8.4.5 Sonstige Anzeigen

Die Eingaben des Bedieners in die Web-Oberfläche werden, je nach einzugebendem Parameter, automatisch nach vorgegebenen Regeln überprüft. So können Änderungen nur dann gespeichert werden, wenn zuvor alle Werte in einem Dialog korrekt eingegeben wurden.

Abb. 116: Anzeige einer fehlerhaften Eingabe

Legende

- 1 Feld Netmask
- 2 Fehlerhafter Eintrag
- 3 Verbotssymbol
- 4 Hinweis
- 5 Inaktive Schaltfläche

Folgende Änderungen ergeben sich bei einer fehlerhaften Eingabe im Dialog (hier am Beispiel einer nicht korrekt eingetragenen IP-Adresse):

- Hinter dem fehlerhaften Eintrag (Abb. 116, Pos. 2) im Feld **Netmask** (Abb. 116, Pos. 1) erscheint ein rotes "Verbotssymbol" (Abb. 116, Pos. 3).
- Wenn Sie den Mauszeiger über das Verbotszeichen setzen, erscheint ein Hinweis mit Zusatzinformationen zum Fehler (Abb. 116, Pos. 4).
- Die Schaltfläche Save ist deaktiviert (Abb. 116, Pos. 5), so dass die aktuell hinterlegten Werte so nicht abgespeichert werden können.

Gehen Sie folgendermaßen vor, um den Fehler zu beheben:

Prüfen Sie anhand des Hinweises, welche Fehleingabe genau vorliegt.

Im konkreten Beispiel hat der eingetragene Wert nicht das Format einer IP-Adresse.

■ Korrigieren Sie den fehlerhaften Wert, tragen Sie z. B. den Wert "255.255.255.0" ein.

Das "Verbotssymbol" wird ausgeblendet und die Schaltfläche **Save** wird aktiviert.

Speichern Sie die Einstellungen durch Drücken der Schaltfläche Save ab.

8.4.6 Ändern von Parameterwerten

In der Listendarstellung der Registerkarte **Monitoring** werden verschiedene Parameter der jeweils ausgewählten Komponente angezeigt. Diese Parameter können teilweise durch den Bediener angepasst werden, teilweise sind feste Werte hinterlegt.

Bei allen Parametern, die geändert werden können, erscheint hinter dem jeweiligen Parameter ein "Edit"-Symbol in Form eines stilisierten Notizzettels mit Stift, wenn Sie den Mauszeiger in die entsprechende Zeile setzen (Abb. 117, Pos. 1).

Monitoring	Configuration	Logging	Tasks	Charts	Dashboards	Access Confi	guration	
Name							Value	
Climate Co	ontroller							
E Liquid Cod	oling Package							
Device							ок	
Des	scription					\sim	Liquid Coo	ling Package
Loc	ation					(1) 🛯	Location	
— Тур	e					2	LCP-CW	
Ord	ler Number						3314.230	
Ser	ial Number						67035115	
Pro	duction Date						39.2022	
Sof	tware Revision						V0.109	
Har	dware Revision						0402	
Inte	rface						Internal	
Sta	tus						ок	

Abb. 117: Editierbarer Parameter mit "Edit"-Symbol

1 "Edit"-Symbol

Erscheint dieses Symbol nicht, kann der zugehörige Wert nicht geändert werden.

Beispiel:

- Wählen Sie im Navigationsbereich den Eintrag "Liquid Cooling Package" aus.
- Wählen Sie im rechten Teil der Bildschirmseite die Registerkarte Monitoring aus.

Legende

Klappen Sie nacheinander die Einträge "Liquid Cooling Package" und "Device" aus, indem Sie auf das "Plus"-Zeichen vor dem Eintrag klicken (Abb. 118, Pos. 1).

Rittal LCP(!V8.18.6~8)		Name : Name of the Unit Lecution :: Location of the Unit Contact :: Contact Postson IP Address: 10.281.548.57
a lie Processing Unit	Maniforing Configuration Logging Tasks Chu	ets Danhboards Access Configuration
Real Devices	Name	Webe
[1] Climate Controller (CIOC1) [1] Climate Controller (CIOC1)	Climate Controller	
 Exception county Package (CCP-CH) Exception county Package (CCP-CH) 	 Liquid Cooling Package 	
[4] CMCIE-OF (CMCIE-DF)	E Device	OK
- (SI CMCIILDIF (CMCIILDIF)	- Description	Liquid Cooling Pachage
 El CINCIE-HUM (CINCIE-HUM) 	- Location	(2) SLecator
L VILa Devices	- Type	Device Settings
	- Order Number	3314.230
	- Serial Number	67835115
	 Production Date 	39 2822
	- Software Revision	V0.109
	- Hardware Revision	0482
	- Interface	Internal
	- Status	OK
	Air Temperature	
	 Differential Pressure (Differential Pressure) 	OK
	. Faits	
	Coolant	
	Valve	
	Cooling Capacity (Cooling Capacity)	OK
	Leakage Sensor (Leakage Sensor)	OK
	Condensate	
	a Setup	
	Operating Data	
	C Barrier	

Abb. 118: Auswahl eines einzelnen Parameters

Legende

- 1 Einträge Liquid Cooling Package und Device
- 2 Parameter "Location"
- Setzen Sie den Mauszeiger an das Ende der ersten Spalte in der Zeile "Location" (Abb. 118, Pos. 2).
 Es erscheint ein "Edit"-Symbol und der Mauszeiger ändert sich in ein "Hand"-Symbol.
- Klicken Sie auf das "Edit"-Symbol.
 Es erscheint der Dialog "Device Settings" mit dem Parameter "Device.Location".

Device Settings	8
Device.Location Write Cancel	

Abb. 119: Dialog "Device Settings"

- Tragen Sie hier den Aufstellungsort des Liquid Cooling Package ein.
- Bestätigen Sie Ihre Eingabe durch Klicken auf die Schaltfläche Write.

Der Dialog wird geschlossen und der neue Wert erscheint in der Zeile "Location".

 Setzen Sie nun den Mauszeiger an das Ende der ersten Spalte in der Zeile "Type".
 Hier erscheint kein "Edit"-Symbol, d. h. den hier hin-

terlegten Wert (z. B. "LCP-I 30 kW") können Sie nicht ändern.

Eventuell möchten Sie mehrere Werte gleichzeitig ändern oder Sie wissen nicht genau, unter welchem Eintrag der gewünschte Parameter abgelegt ist. In diesem Fall können Sie auch alle zu ändernden Parameterwerte der untergeordneten Einträge in einem gemeinsamen Fenster anzeigen.

Klappen Sie nur den Eintrag "Liquid Cooling Package" aus, indem Sie auf das "Plus"-Zeichen vor diesem Eintrag klicken (Abb. 120, Pos. 1). Setzen Sie den Mauszeiger an das Ende der ersten Spalte in der Zeile "Liquid Cooling Unit" (Abb. 120, Pos. 2).

Es erscheint ein "Edit"-Symbol und der Mauszeiger ändert sich in ein "Hand"-Symbol.

Rittal LCP(!V8.18.6~8)	Namo - Namo - Lacation Location - Location Contact - Contact P IP Address - 10 201.14	re Unit Ithe Unit Issan 8.57
Processing Unit	Monitoring Configuration Logging Tanks Charts Dashboards Access	Configuration
📾 Real Devices	Name	Value
- (1) Climate Controller (CIOC1)	Liquid Cooling Package	
ISI CHCIEACC (CMCIEACC)	Device	OK
[4] CMCII-DIF (CMCII-DIF)	- Description	Liquid Cooling Package
- 💼 (5) CMCHI-DIF (CMCH-DIF)	- Location	Location
G CMCIII HUM (CMCIII HUM)	- Type	LOP-OW
- WIDH DONOS	- Order Number	3314,230
	- Serial Number	67035115
	- Production Date	39.2022
	 Software Revision 	V0.109
	- Hardware Revision	0402
	- Interface	Internal
	- Status	OK
	Ar Temperature	
	Differential Pressure (Differential Pressure)	OK
	. Fais	
	Coolant)
	a vove	
	Cooling Capacity (Cooling Capacity)	OK
	Leakage Sensor (Leakage Sensor)	OK
	Condensate	
	a Selup	
	 Operating Data 	
	in Remote	

Abb. 120: Auswahl mehrerer Parameter

Legende

- 1 Eintrag Liquid Cooling Unit
- 2 "Edit"-Symbol
- Klicken Sie auf das "Edit"-Symbol.

Es erscheint der Dialog "Device Settings" mit der Liste aller Parameter, die geändert werden können.

Device Settings				
Device.Description Liquid Cooling Package Device.Location Location Write Cancel				

Abb. 121: Dialog "Device Settings" mit mehreren Parametern

- Hinterlegen Sie f
 ür alle gew
 ünschten Parameter die ge
 änderten Werte.
- Bestätigen Sie Ihre Eingaben durch Klicken auf die Schaltfläche Write.

Der Dialog wird geschlossen.

Wenn Sie den Dialog erneut öffnen, können Sie alle geänderten Werte einsehen.

_ Hinweis:

Soll eine zu hohe Anzahl an Variablen geändert werden, erscheint eine Fehlermeldung. In diesem Falle müssen Sie in die nächst untere Ebene wechseln.

8.4.7 Abmelden und Ändern des Passworts

Für jede Benutzergruppe (und somit auch für jeden Benutzer) kann eine Zeit vorgegeben werden, nach der der Benutzer bei Inaktivität automatisch abgemeldet wird (vgl. Montage-, Installations- und Bedienungsanleitung des IoT Controllers 3124.300). Ein Benutzer kann sich aber auch über die Web-Oberfläche abmelden.

Drücken Sie die Schaltfläche **Logout** links im oberen Bereich der Bildschirmseite.

Abb. 122: Schaltflächen Password und Logout

Legende

- 1 Schaltfläche Password
- 2 Schaltfläche Logout

Der Logout wird sofort durchgeführt und es erscheint das Anmeldefenster.

Des Weiteren kann jeder Benutzer in der Web-Oberfläche sein eigenes Passwort ändern.

Drücken Sie die Schaltfläche Password links im oberen Bereich der Bildschirmseite.

Der Dialog "Set new Password for User 'XXX'" erscheint.

Set new password for user 'admin'				
Password				
Re-enter password				
Save Cancel				

Abb. 123: Ändern des Passworts

Geben Sie das neue Passwort in der Zeile "Password" ein (mindestens 3 Zeichen) und wiederholen Sie es in der Zeile "Re-enter Password".

Wenn beide Einträge übereinstimmen, müssen Sie für die nächste Anmeldung am System das neue Passwort benutzen.

Hinweis:

Unabhängig von dieser Änderung kann ein Benutzer mit entsprechenden Rechten über die Benutzerverwaltung die Passwörter aller Benutzer ändern (vgl. Montage-, Installations- und Bedienungsanleitung des IoT Interface 3124.300).

8.4.8 Neu-Organisieren der angeschlossenen Komponenten

Bei der Neu-Installation von Komponenten am Climate Controller werden diese in der Baumansicht an der nächsten freien Stelle eingefügt und erhalten die entsprechende ID-Nummer. Dies kann insbesondere bei mehrmaligen Nachrüstungen oder Änderungen der Reihenfolge der angeschlossenen Komponenten dazu führen, dass keine Zuordnung zwischen der Position der Komponenten im CAN-Bus und der entsprechenden ID-Nummer vorhanden ist.

Durch die Funktion "Reorganize" werden alle angeschlossenen Komponenten folgendermaßen neu durchnummeriert.

- 1. Climate Controller
- 2. Liquid Cooling Package (CAN-Bus 2)
- 3. Sensor 1 (CAN-Bus 1)
- 4. Sensor 2 (CAN-Bus 1)
- 5. Sensor 3 (CAN-Bus 1)
- 6. Sensor n (CAN-Bus 1)
- Klicken Sie im Navigationsbereich auf den Eintrag "Climate Controller" oder eine beliebige andere, angeschlossene Komponente mit der rechten Maustaste.

Rittal I Username: a Password	LCP(!V8.18.6~8)
Processing Unit Processing Unit Processing Unit Processing Unit Processing [1] Climate Con [2] Liquid Cooli [3] CMCIII-ACC [4] CMCIII-DIF [6] CMCIII-DIF [6] CMCIII-DIF [6] CMCIII-HUW [7] Virtual Devices	Acknowledge All Devices Acknowledge Alarms Reorganize (CMCIII-DIF) (CMCIII-DIF) I (CMCIII-HUM)

Abb. 124: Kontextmenü mit Funktion "Reorganize"

 Klicken Sie mit der linken Maustaste auf den Eintrag "Reorganize" im Kontextmenü.

Es erscheint eine Meldung, dass durch das Neu-Organisieren die Komponenten neu indiziert werden. Dies kann zu Problemen beim Zugriff auf diese Komponenten,

z. B. über SNMP, führen, so dass dieser Zugriff neu konfiguriert werden muss. Die "Alarm Configuration" der einzelnen Sensoren bleibt jedoch erhalten.

Die Sensoren werden abschließend automatisch wieder am Climate Controller angemeldet.

Hinweis:

Beim Neu-Organisieren der Komponenten werden insbesondere alle Komponenten mit Status "Lost" aus dem Navigationsbereich entfernt.

8.5 Registerkarte Monitoring

Auf der Registerkarte **Monitoring** werden alle Einstellungen für die einzelnen Komponenten des Systems vorgenommen, wie z. B. Grenzwerte für Warn- und Alarmmeldungen. Die Anzeige im rechten Teil der Bildschirmseite hängt davon ab, welche Komponente im Navigationsbereich angewählt wurde.

8 Bedienung

- Wählen Sie im Navigationsbereich den Eintrag "Climate Controller" (oberster Knoten) an, stehen auf der Registerkarte **Monitoring** alle "Real Devices" zur Auswahl.
- Wählen Sie im Navigationsbereich eine spezielle Komponente, z. B. den Eintrag "Liquid Cooling Package", steht auf der Registerkarte **Monitoring** nur diese Komponente zur Auswahl. Hier können Sie zwischen zwei Anzeigemöglichkeiten auswählen:
- Baumdarstellung: Hier können Sie gezielt und schnell auf einzelne Parameter zugreifen.
- Grafische Darstellung: Hier erhalten Sie einen schnellen Überblick über das Gesamtsystem des Liquid Cooling Package, wie z. B. Status und Drehzahl der Lüfter oder auch Temperaturwerte der Servereintrittsund -austrittsseite.

Wenn nach Anwahl der Ebene "Liquid Cooling Package" die untergeordneten Einträge "Device", "Air", "Water" usw. angezeigt werden (Abb. 125, Pos. 1) schalten Sie folgendermaßen auf die grafische Darstellung um:

Drücken Sie das farbige "Grafik"-Symbol hinter dem Eintrag "Liquid Cooling Package" in Form eines stilisierten Diagramms (Abb. 125, Pos. 2).

Monitoring	Configuration	Logging	Tasks	Charts	Dashboards	Access Configuration
Name						Value
Climate Co	introller					\bigcirc
E Liquid Coo	ling Package					
Device				5		Hide Visualisatio
Air Terr	perature		(·	1)		
Differer	tial Pressure (Differ	rential Press	Jure)	9		ОК
Fans						
 Coolan 	1					
 Valve 						
Cooling	Capacity (Cooling /	Capacity)				ок
 Leakag 	e Sensor (Leakage	Sensor)				ок
Conder	nsate					
 Setup 						
Operati	ng Data					
 Remote 	3					
 Feature 	łs					
E CMCIII-AC	c					
CMCIII-DIF	:					
CMCIII-DIF						
CMCIII-HU	M					

Abb. 125: Baumstruktur

Die Anzeige wechselt in die grafische Darstellung (Abb. 126) und alle Status und Drehzahlen der Lüfter, Temperaturwerte der Servereintritts- und -austrittstemperatur sowie die Regelmodi von Lüfter- und Kühlmediumsteuerung können auf einen Blick angesehen und durch Klicken auf die Grafik (Abb. 126, Pos 2) verändert werden.

Wenn nach Anwahl der Ebene "Liquid Cooling Package" die grafische Darstellung (Abb. 126) vorgewählt ist, schalten Sie folgendermaßen auf die Baumdarstellung um:

 Drücken Sie das in Graustufen dargestellte "Grafik"-Symbol hinter dem Eintrag "Liquid Cooling Package" (Abb. 126, Pos 1).

Abb. 126: Grafische Darstellung

Die Anzeige wechselt in die Baumdarstellung (Abb. 125) und Sie können gezielt auf die einzelnen Einstellwerte für das Liquid Cooling Package zugreifen.

Die folgenden Beschreibungen gehen davon aus, dass Sie die Baumdarstellung angewählt haben.

In den folgenden Abschnitten 8.5.1 "Device" bis 8.5.12 "Features" werden jeweils nur die Parameter ausführlich beschrieben, für die Sie Änderungen durchführen können. Darüber hinaus gibt es noch Anzeigewerte, die zur Information dienen.

8.5.1 Device

In dieser Ebene werden generelle Einstellungen zum Liquid Cooling Package durchgeführt.

Parameter	Erläuterung
Description	Individuelle Beschreibung des Liquid Cooling Package.
Location	Aufstellungsort des Liquid Cooling Packa- ge.

Tab. 27: Einstellungen in der Ebene "Device"

Des Weiteren werden noch Parameter angezeigt, die Detailinformationen liefern, wie z. B. die Version der eingesetzten Soft- und Hardware. Diese Informationen sollten Sie insbesondere bei Rückfragen an Rittal bereit halten, um eine schnelle Fehlerdiagnose zu ermöglichen.

8.5.2 Air Temperature

In dieser Ebene werden Einstellungen zu den Sensoren für die Servereintritts- und -austrittstemperaturen durchgeführt. Hierzu sind entsprechende Unterebenen angelegt. Unterhalb der Ebenen "IT Supply" bzw. "IT Return" werden die Werte für jeden einzelnen Sensor "Top", "Center" und "Bottom" angezeigt bzw. eingestellt. Darüber hinaus werden in der Ebene "Average" jeweils Einstellungen zu den gemittelten Werten der drei Temperatursensoren durchgeführt.

Ebene "IT Supply" > "Air Temperature (Top)"

In dieser Ebene können Sie folgende Parameter für den oberen Temperatursensor der Servereintrittstemperatur einstellen:

8 Bedienung

Parameter	Erläuterung
DescName	(Ausführliche) Beschreibung des Tempera- tursensors.
SetPtHigh- Alarm	Obere Grenze der Servereintrittstempera- tur am oberen Temperatursensor, bei de- ren Überschreiten eine Alarmmeldung ausgegeben wird.
SetPtHigh- Warning	Obere Grenze der Servereintrittstempera- tur am oberen Temperatursensor, bei de- ren Überschreiten eine Warnmeldung ausgegeben wird.
SetPtLow- Warning	Untere Grenze der Servereintrittstempera- tur am oberen Temperatursensor, bei de- ren Unterschreiten eine Warnmeldung ausgegeben wird.
SetPtLow- Alarm	Untere Grenze der Servereintrittstempera- tur am oberen Temperatursensor, bei de- ren Unterschreiten eine Alarmmeldung ausgegeben wird.
Hysterese	Notwendige prozentuale Abweichung bei Unter- bzw. Überschreiten der Grenztem- peratur am oberen Temperatursensor für eine Statusänderung (vgl. Abschnitt 19 "Glossar").

8

Tab. 28: Einstellungen in der Ebene "Air Temperature (Top)"

Des Weiteren werden für den Temperatursensor noch folgende Parameter angezeigt:

Parameter	Erläuterung
Value	Servereintrittstemperatur, gemessen am oberen Temperatursensor.
Status	Aktueller Status des oberen Temperatur- sensors. "OK": Der Temperatursensor ist ange- schlossen und betriebsbereit. "Alarm": Der Temperatursensor ist ausge- fallen oder wird nicht erkannt.

Tab. 29: Anzeigen in der Ebene "Air Temperature (Top)"

Ebene "IT Supply" > "Air Temperature (Center)" und "Air Temperature (Bottom)"

In diesen Ebenen können Sie alle Parameter analog zum oberen Temperatursensor einstellen.

Ebene "IT Supply" > "Air Temperature (Average)"

In dieser Ebene können Sie alle Parameter analog zum oberen Temperatursensor einstellen. Hierbei gelten die angegebenen Grenzwerte für die aus den drei Temperatursensoren gemittelten Werte.

Ebene "IT Return"

In dieser Ebene werden Einstellungen zur Serveraustrittstemperatur durchgeführt. Die Einstellungen sowie die angezeigten Parameter entsprechen denen in der Ebene "IT Supply".

8.5.3 Fans

In dieser Ebene werden Einstellungen zu den verbauten Lüftern durchgeführt.

Unterebene "Current Speed" > "Fan1" bis "Fan6" In diesen Ebenen werden Einstellungen zum jeweiligen Lüfter durchgeführt.

Parameter	Erläuterung
DescName	(Ausführliche) Beschreibung des jeweiligen Lüfters.

Tab. 30: Einstellungen in den Unterebenen "Fan1" bis "Fan6"

Des Weiteren werden für die Lüfter noch folgende Parameter angezeigt:

Parameter	Erläuterung
Value	Aktuelle Drehzahl des jeweiligen Lüfters in % der Maximaldrehzahl.
Status	Aktueller Status des jeweiligen Lüfters. "OK": Lüfter ist angeschlossen und in Be- trieb. "Low Warn": Lüfterdrehzahl liegt unter dem Grenzwert "SetPtLowWarning". "Off": Lüfter ist ausgeschaltet. "Inactive": Lüfterüberwachung ist ausge- schaltet, der Lüfter dreht aber.

Tab. 31: Anzeigen in den Unterebenen "Fan1" bis "Fan6"

Unterebene "Config"

In dieser Ebene werden Einstellungen zu den Betriebsarten sowie zu den Drehzahlen der Lüfter durchgeführt:

Parameter	Erläuterung
SetPtLow- Warning	Untere Grenze der Lüfterdrehzahl, bei de- ren Unterschreiten eine Warnmeldung aus- gegeben wird.
Command	Auswahl der Betriebsart. "Automatic": Die Lüfterdrehzahlen werden anhand der Temperatur- bzw. Druckdiffe- renz bestimmt und automatisch geregelt. "Manual": Die Lüfterdrehzahlen werden manuell vorgegeben. "Off": Die Lüfter werden ausgeschaltet. "Minimum": Die Lüfter drehen mit der hin- terlegten Mindestdrehzahl. "Full": Die Lüfter drehen mit 100 %.

Tab. 32: Einstellungen in der Unterebene "Config"

Unterebene "Internal Control"

In dieser Ebene werden die Parameter für die einzelnen Lüfter angezeigt, wie diese von der Regeleinheit der Lüfter vorgegeben werden.
Erläuterung	Parameter	Erläuterung
Aktuell angewählte Betriebsart.	Status	Aktueller Status bzgl. der Vorlauftempera- tur des Kühlmediums. "OK": Kein Grenzwert ist über- bzw. unter-
OverrideGrund für eine Beeinflussung der Lüfter- drehzahl. Bei einem Ausfall der Tempera- tursensoren erscheint hier z. B. die Meldung "Invalid Air Temperatures", erfolgt die Regelung im Remote-Betrieb erscheint hier "Remote". "None": Es liegt keine Beeinflussung vor, 		schritten. "Alarm": Der Temperatursensor ist ausge- fallen. Too Low: Grenzwert "SetPtLowAlarm" un- terschritten. Low Warn: Grenzwert "SetPtLowWarning" unterschritten. High Warn: Grenzwert "SetPtHighWar- ning" überschritten. Too High: Grenzwert SetPtHighAlarm"
Sollwert für die Drehzahl der Lüfter in % der Maximaldrehzahl, wie sie von der Regelein- heit vorgegeben wird.		überschritten. "n.a.": Die Sensoren für die Vorlauf- und Rücklauftemperatur des Kühlmediums sind in der Konfiguration dealtiviert (vol
	ErläuterungAktuell angewählte Betriebsart.Grund für eine Beeinflussung der Lüfter- drehzahl. Bei einem Ausfall der Tempera- tursensoren erscheint hier z. B. die Meldung "Invalid Air Temperatures", erfolgt die Regelung im Remote-Betrieb erscheint hier "Remote". "None": Es liegt keine Beeinflussung vor, die Lüfter laufen mit der berechneten Dreh- zahl.Sollwert für die Drehzahl der Lüfter in % der Maximaldrehzahl, wie sie von der Regelein- heit vorgegeben wird.	ErläuterungParameterAktuell angewählte Betriebsart.StatusGrund für eine Beeinflussung der Lüfter- drehzahl. Bei einem Ausfall der Tempera- tursensoren erscheint hier z. B. die Meldung "Invalid Air Temperatures", erfolgt die Regelung im Remote-Betrieb erscheint hier "Remote". "None": Es liegt keine Beeinflussung vor, die Lüfter laufen mit der berechneten Dreh- zahl.Sollwert für die Drehzahl der Lüfter in % der Maximaldrehzahl, wie sie von der Regelein- heit vorgegeben wird.

Tab. 33: Einstellungen in der Unterebene "Internal Control"

8.5.4 Coolant

In dieser Ebene werden Einstellungen zum Kühlmediumkreislauf durchgeführt.

Ebene "Temperatures" > "Coolant Supply"

In dieser Ebene werden Einstellungen zur Kühlmediumvorlauftemperatur durchgeführt.

Parameter	Erläuterung
DescName	(Ausführliche) Beschreibung der Vor- lauftemperatur des Kühlmediums.
SetPtHigh- Alarm	Obere Grenze der Vorlauftemperatur, bei deren Überschreiten eine Alarmmeldung ausgegeben wird.
SetPtHigh- Warning	Obere Grenze der Vorlauftemperatur, bei deren Überschreiten eine Warnmeldung ausgegeben wird.
SetPtLow- Warning	Untere Grenze der Vorlauftemperatur, bei deren Unterschreiten eine Warnmeldung ausgegeben wird.
SetPtLow- Alarm	Untere Grenze der Vorlauftemperatur, bei deren Unterschreiten eine Alarmmeldung ausgegeben wird.
Hysterese	Notwendige prozentuale Abweichung bei Unter- bzw. Überschreiten der Grenztem- peratur des Kühlmediums für eine Status- änderung (vgl. Abschnitt 19 "Glossar").

Tab. 34: Einstellungen in der Ebene "Coolant Supply"

Des Weiteren werden für die Vorlauftemperatur des Kühlmediums noch folgende Parameter angezeigt:

Parameter	Erläuterung
Value	Aktuelle Vorlauftemperatur des Kühlmedi- ums.

Tab. 35: Anzeigen in der Ebene "Coolant Supply"

Abschnitt 7.2.4 "LCP Configuration"). Tab. 35: Anzeigen in der Ebene "Coolant Supply" **Ebene "Temperatures" > "Coolant Return"** In dieser Ebene werden Einstellungen zur Rücklauftemperatur des Kühlmediums durchgeführt. Die Darstellungen entsprechen vollständig denen der

Ebene "Coolant Flow"

Ebene "Coolant Supply".

In dieser Ebene werden Einstellungen zum Durchfluss des Kühlmediums durchgeführt:

Parameter	Erläuterung
DescName	(Ausführliche) Beschreibung des Durch- flusses des Kühlmediums.
SetPtHigh- Alarm	Obere Grenze für den Durchfluss des Kühl- mediums, bei dessen Überschreiten eine Alarmmeldung ausgegeben wird.
SetPtLow- Alarm	Untere Grenze für den Durchfluss des Kühlmediums, bei dessen Unterschreiten eine Alarmmeldung ausgegeben wird.

Tab. 36: Einstellungen in der Ebene "Coolant Flow"

Des Weiteren werden für den Durchfluss des Kühlmediums noch folgende Parameter angezeigt:

Parameter	Erläuterung
Value	Aktueller Durchflusswert des Kühlmedi- ums.

Tab. 37: Anzeigen in der Ebene "Coolant Flow"

8 Bedienung

Parameter	Erläuterung
Status	Aktueller Status bzgl. des Durchflusses des Kühlmediums. "Error": Der Regelkugelhahn ist geöffnet, es wird aber nur ein geringer Kühlmedium- durchfluss gemessen. "OK": Durchflussmesser ist korrekt ange- schlossen und in Betrieb. "Alarm": Der Durchflussmesser ist nicht an- geschlossen oder wird nicht erkannt. Too Low: Grenzwert "SetPtLowAlarm" un- terschritten. Too High: Grenzwert "SetPtHighWarning" überschritten. "n.a.": Der Durchflussmesser ist in der Konfiguration deaktiviert (vgl. Abschnitt 7.2.4 "LCP Configuration").

Tab. 37: Anzeigen in der Ebene "Coolant Flow"

8.5.5 Valve

In dieser Ebene werden Einstellungen zum Regelkugelhahn durchgeführt:

Unterebene "Control Valve"

In dieser Unterebene werden Einstellungen zum Regelkugelhahn durchgeführt.

Parameter	Erläuterung
DescName	(Ausführliche) Beschreibung des Regelku- gelhahns.

Tab. 38: Einstellungen in der Unterebene "Control Valve"

Des Weiteren werden für den Regelkugelhahn noch folgende Parameter angezeigt:

Parameter	Erläuterung
Value	Stellung des Regelkugelhahns in %: 0 % = Kugelhahn geschlossen, 100 % = Kugelhahn vollständig geöffnet.
Status	Aktueller Status des Regelkugelhahns. "Error": Der Regelkugelhahn ist vollständig geschlossen, es wird aber ein Kühlmedi- umdurchfluss gemessen. "OK": Der Regelkugelhahn ist korrekt an- geschlossen und in Betrieb. "n.a.": Der Regelkugelhahn ist in der Konfi- guration deaktiviert (vgl. Abschnitt 7.2.4 "LCP Configuration").

Tab. 39: Anzeigen in der Unterebene "Control Valve"

Unterebene "Config"

In dieser Ebene werden Einstellungen zu den Betriebsarten des Regelkugelhahns sowie zur Stellung des Regelkugelhahns durchgeführt:

Parameter	Erläuterung
Command	Auswahl der Betriebsart: "Automatic": Die Stellung des Regelkugel- hahns wird anhand der Servereintrittstem- peratur bestimmt und automatisch geregelt. "Manual": Die Stellung des Regelkugel- hahns wird manuell vorgegeben. "Off": Der Regelkugelhahn ist vollständig geschlossen. "Minimum": Der Regelkugelhahn wird auf den hinterlegten Mindestwert geöffnet. "Full": Der Regelkugelhahn ist vollständig geöffnet.

Tab. 40: Einstellungen in der Unterebene "Config"

Unterebene "Internal Control"

In dieser Ebene werden die Parameter für den Regelkugelhahn angezeigt, wie dieser von der Regeleinheit des Kühlmediumkreislaufs vorgegeben werden.

Parameter	Erläuterung
Control Mode	Aktuell angewählte Betriebsart.
Influence	Grund für eine Beeinflussung der Stellung des Regelkugelhahns. Erfolgt die Regelung im Remote-Betrieb erscheint hier "Remo- te". "None": Es liegt keine Beeinflussung vor, der Regelkugelhahn hat die berechnete Stellung.
Value	Sollwert für die Stellung des Regelkugel- hahns in %, wie sie von der Regeleinheit vorgegeben wird.

Tab. 41: Einstellungen in der Unterebene "Internal Control"

8.5.6 Cooling Capacity

In dieser Ebene werden Einstellungen zur Kühlleistung durchgeführt:

Parameter	Erläuterung
DescName	(Ausführliche) Beschreibung der Kühlleis- tung.

Tab. 42: Einstellungen in der Ebene "Cooling Capacity"

Des Weiteren werden für die Kühlleistung noch folgende Parameter angezeigt:

Parameter	Erläuterung
Value	Errechnete Kühlleistung des Liquid Cooling Package. Die Leistung wird aus den Vor- und Rücklauftemperaturen sowie den Durchflusswerten des Kühlmediumkreis- laufs errechnet (der Wert wird über die Dauer von ca. 1 bis 2 Minuten gemittelt).
Status	Aktueller Status der Kühlleistung. Hier wird immer "OK" angezeigt, ausgenommen wenn der Durchflussmesser nicht vorhan- den ist. Dann wird hier "inactive" angezeigt. Die Einstellung erfolgt unter "Coolant confi- guration".

Tab. 43: Anzeigen in der Ebene "Cooling Capacity"

8.5.7 Leakage Sensor

In dieser Ebene werden Einstellungen zur Leckageüberwachung durchgeführt:

Parameter	Erläuterung
DescName	(Ausführliche) Beschreibung der Leckage- überwachung.

Tab. 44: Einstellungen in der Ebene "Leakage Sensor"

Des Weiteren werden für die Leckageüberwachung noch folgende Parameter angezeigt:

Parameter	Erläuterung
Status	Aktueller Status der Leckageüberwa- chung. "OK": Keine Leckage vorhanden. "Alarm": Leckage vorhanden.

Tab. 45: Anzeigen in der Ebene "Leakage Sensor"

8.5.8 Condensate

In dieser Ebene werden Einstellungen zur Kondensatüberwachung durchgeführt:

Unterebene "Condensate Sensor"

In dieser Unterebene werden Einstellungen zum Kondensatsensor durchgeführt.

Parameter	Erläuterung
DescName	(Ausführliche) Beschreibung des Konden- satsensors.

Tab. 46: Einstellungen in der Unterebene "Condensate Sensor"

Des Weiteren werden für den Kondensatsensor noch folgende Parameter angezeigt:

Parameter	Erläuterung
Status	Aktueller Status des Kondensatsensors. "OK": Kein Kondensat vorhanden. "Alarm": Kondensat vorhanden.

Tab. 47: Anzeigen in der Unterebene "Condensate Sensor"

Unterebene "Condensate Pump"

In dieser Unterebene werden Einstellungen zur Kondensatpumpe durchgeführt.

Parameter	Erläuterung
DescName	(Ausführliche) Beschreibung der Konden- satpumpe.

Tab. 48: Einstellungen in der Unterebene "Condensate Pump"

Des Weiteren werden für die Kondensatpumpe noch folgende Parameter angezeigt:

Parameter	Erläuterung
Value	0 = Kondensatpumpe nicht aktiv. 1 = Kondensatpumpe aktiv.
Duration	Letzte Einschaltdauer der Kondensatpum- pe.
Status	Aktueller Status der Kondensatpumpe. "Off": Die Pumpe läuft nicht. "On": Die Pumpe läuft.

Tab. 49: Anzeigen in der Unterebene "Condensate Pump"

Werkseitig ist kein Kondensatsensor und keine Kondensatpumpe verbaut.

8.5.9 Setup

In dieser Ebene werden folgende Einstellungen durchgeführt:

Parameter	Erläuterung
Tempera- ture IT Sup- ply	Einstellung des Setpoints (Servereintritts- temperatur).
Differential pressure	Einstellung des Setpoints für die Druckdif- ferenz. Dies wird nur benötigt, wenn die Regelung der Lüfterdrehzahl auf die Druck- differenz der Drücke vor und hinter den ein- gebauten Komponenten erfolgen soll.

Tab. 50: Einstellungen in der Ebene "Setup"

8.5.10 Operating Data

In dieser Ebene wird folgender Parameter angezeigt:

Parameter	Erläuterung
Product Number	Produktionsnummer des LCP.

Tab. 51: Anzeigen in der Ebene "Operating Data"

Unterebene "Runtimes"

In dieser Unterebene werden Einstellungen zu den Betriebsstunden und Schaltzyklen der einzelnen Komponenten durchgeführt.

8 Bedienung

Parameter	Erläuterung
Fan1-Value Fan6-Value	Aufsummierte Betriebsstunden jedes ein- zelnen Lüfters.
Valve	"Cycles": Aufsummierte Schaltzyklen des Ventils. "Reset": Zurücksetzen der Anzahl Schalt- zyklen.
Pump	"Cycles": Aufsummierte Anzahl Ansteue- rungen der Kondensatpumpe. "Value": Aufsummierte Betriebszeit der Kondensatpumpe in Sekunden. "Reset": Zurücksetzen der Anzahl Ansteu- erungen.
Flow meter	Aufsummierter Durchfluss Kühlmedium in Liter.
Thermal Energy	Aufsummierte Wärmeenergie in kWh.
Electrical Energy	Aufsummierte elektrische Energie in kWh.
EER	Anzeige der aktuellen Energy Efficieny Ra- tio (Verhältnis zwischen erzeugter Kälte- energie und elektrischer Energie).

Tab. 52: Anzeigen in der Unterebene "Runtimes"

8.5.11 Remote

Die Remote Steuerung ist vorgesehen, um das Steuern des Systems durch externe SW-Systeme über die verfügbaren Protokolle (SNMP, ModbusTCP, OPC-UA) zu ermöglichen.

Die Remote-Funktion ist nur aktiv, wenn der zugehörige "Internal Control.Mode" der Lüfter und des Ventils auf "Automatik" steht.

Unterebene "Remote Temperature"

Die Remote-Steuerung der Temperatur überschreibt den Wert "IT Supply Air Average.Value". Damit ist die Regelung auf eine extern vorgegebene Temperatur möglich.

Parameter	Erläuterung
DescName	(Ausführliche) Beschreibung des Remote- Betriebs bzgl. der Temperaturregelung.
Timeout	Zeitdauer zwischen 1 und 60 Sekunden, für die die externe Steuerung (noch) aktiv ist, sofern der Timeout aktiviert ist. In die- sem Fall muss die Zeit von der externen Software immer wieder neu verlängert wer- den. Wird der Wert "0" erreicht, erfolgt die Regelung der Temperatur wieder durch die interne Steuerung des LCP.

Tab. 53: Einstellungen in der Unterebene "Remote Temperature"

Parameter	Erläuterung
Mode	Betriebsart der Remote-Steuerung bzgl. der Temperatur. "Off": Die Remote-Steuerung ist deakti- viert. "With timeout": Bei aktivem Timeout muss der Timeout-Wert vom externen System zyklisch neu geschrieben werden. Läuft die Zeit ab (Wert = 0), wird die Remote-Steue- rung deaktiviert und die Steuerung erfolgt gemäß der intern vorgewählten Regelung (Delta T bzw. Delta P). "Without timeout": Ist die Timeoutüberwa- chung nicht aktiv, bleibt der zuletzt in "Value" geschriebene Wert gültig.

Tab. 53: Einstellungen in der Unterebene "Remote Temperature"

Des Weiteren werden für die Remote-Steuerung der Temperatur noch folgende Parameter angezeigt:

Parameter	Erläuterung
Value	Extern vorgegebener Setpoint für die Servereintrittsemperatur.
Status	Aktueller Status des Remote-Betriebs. "Off": Remote-Betrieb ist nicht aktiviert (Timout hat den Wert "0"). "On": Remote-Betrieb ist aktiviert (Timeout hat einen Wert größer 1).

Tab. 54: Anzeigen in der Unterebene "Remote Temperature"

Unterebene "Remote Fans"

Parameter	Erläuterung
DescName	(Ausführliche) Beschreibung des Remote- Betriebs bzgl. der Lüfter.
Timeout	Zeitdauer zwischen 1 und 60 Sekunden, für die die externe Steuerung (noch) aktiv ist, sofern der Timeout aktiviert ist. In die- sem Fall muss die Zeit von der externen Software immer wieder neu verlängert wer- den. Wird der Wert "0" erreicht, erfolgt die Regelung der Lüfterdrehzahl wieder durch die interne Steuerung der LCP.
Mode	Betriebsart der Remote-Steuerung bzgl. der Lüfter. "Off": Die Remote-Steuerung ist deakti- viert. "With timeout": Bei aktivem Timeout muss der Timeout-Wert vom externen System zyklisch neu geschrieben werden. Läuft die Zeit ab (Wert = 0), wird die Remote-Steue- rung deaktiviert und die Steuerung erfolgt gemäß der intern vorgewählten Regelung (Delta T bzw. Delta P). "Without timeout": Ist die Timeoutüberwa- chung nicht aktiv, bleibt der zuletzt in "Value" geschriebene Wert gültig.

Tab. 55: Einstellungen in der Unterebene "Remote Fans"

Des Weiteren werden für den Remote-Betrieb noch folgende Parameter angezeigt:

Parameter	Erläuterung
Value	Extern vorgegebener Setpoint für die Lüf- terdrehzahl.
Status	Aktueller Status des Remote-Betriebs. "Off": Remote-Betrieb ist nicht aktiviert (Timout hat den Wert "0"). "On": Remote-Betrieb ist aktiviert (Timeout hat einen Wert größer 1).

Tab. 56: Anzeigen in der Unterebene "Remote Fans"

Unterebene "Remote Valve"

Parameter	Erläuterung
DescName	(Ausführliche) Beschreibung des Remote- Betriebs bzgl. des Regelkugelhahns.
Timeout	Zeitdauer zwischen 1 und 60 Sekunden, für die die externe Steuerung (noch) aktiv ist, sofern der Timeout aktiviert ist. In die- sem Fall muss die Zeit von der externen Software immer wieder neu verlängert wer- den. Wird der Wert "0" erreicht, erfolgt die Regelung des Regelkugelhahns wieder durch die interne Steuerung des LCP.
Mode	Betriebsart der Remote-Steuerung bzgl. des Regelventils. "Off": Die Remote-Steuerung ist deakti- viert. "With timeout": Bei aktivem Timeout muss der Timeout-Wert vom externen System zyklisch neu geschrieben werden. Läuft die Zeit ab (Wert = 0), wird die Remote-Steue- rung deaktiviert und die Steuerung erfolgt gemäß der intern vorgewählten Regelung (Delta T bzw. Delta P). "Without timeout": Ist die Timeoutüberwa- chung nicht aktiv, bleibt der zuletzt in "Value" geschriebene Wert gültig.

Tab. 57: Einstellungen in der Unterebene "Remote Valve"

Des Weiteren werden für den Remote-Betrieb noch folgende Parameter angezeigt:

Parameter	Erläuterung
Value	Extern vorgegebener Setpoint für dem Öff- nungswinkel des Regelventils.
Status	Aktueller Status des Remote-Betriebs. "Off": Remote-Betrieb ist nicht aktiviert (Timout hat den Wert "0"). "On": Remote-Betrieb ist aktiviert (Timeout hat einen Wert größer 1).

Tab. 58: Anzeigen in der Unterebene "Remote Valve"

8.5.12 Features

In dieser Ebene werden Einstellungen zur Kondensat-Verhinderung, der Delta T-Regelung (Medium Wasser) sowie der Taupunktüberwachung durchgeführt.

Unterebene "Condensate Prevention"

Bei deaktiviertem Remote-Betrieb kann mithilfe der Kondensat-Verhinderung die anfallende Menge an Kondensat bei Taupunktunterschreitung minimiert bzw. komplett verhindert werden. Diese Funktion muss über das "Command" aktiviert sein (Standardeinstellung) und ist nur bei der Regelung auf die Server-Eintrittstemperatur möglich, nicht jedoch bei kühlmediumseitiger Delta T-Regelung. Die Funktion kann auch nicht gemeinsam mit der Taupunkt-Regelung verwendet werden.

Die Server-Zulufttemperatur wird hierzu bei Annäherung an den Taupunkt solange erhöht, bis diese wieder ausreichend weit über dem Taupunkt liegt.

Zur Bestimmung des aktuellen Taupunkts ist ein CMC III Temperatur-/Luftfeuchte-Sensor (7030.111) im LCP notwendig.

Der Sensor wird über die "Real Devices" im Baum auf der Website des LCP verwaltet.

Der ermittelte Taupunktwert wird mit der vorgegebenen minimalen Server-Eintrittstemperatur verglichen, die von den drei Temperatursensoren gemessen wird (vgl. Abschnitt 8.5.2 "Air Temperature"). In die Berechnung des Taupunkt-Werts wird ein einstellbarer Offset einbezogen, d. h. dem ermittelten Taupunktwert wird der einstellbare Offset addiert, daraus ergibt sich der "Calculated Dewpoint".

Ist die gemessene minimale Server-Eintrittstemperatur kleiner als der berechnete Taupunkt-Wert "Calculated Dewpoint", wird die Kondensat-Verhinderungsfunktion aktiviert. Die Server-Eintrittstemperatur wird dann stufenweise bis zu einem Maximalwert "IT Supply Air Alarm" oberhalb des manuell eingestellten Sollwerts "IT Supply Temp." erhöht. Dabei erfolgt die Erhöhung des Sollwerts solange um 0,5 K pro Minute.

Erreicht die Temperatur hierbei den einstellbaren Alarm-Grenzwert "IT Supply Alarm", wird sofort eine Alarmmeldung ausgegeben.

Liegt die minimale Server-Eintrittstemperatur wieder über dem berechneten Taupunkt-Wert (inkl. einer Hysterese von 1 K), wird die Server-Eintrittstemperatur wieder stufenweise verkleinert.

Parameter	Erläuterung
DescName	(Ausführliche) Beschreibung der Konden- satverhinderung.
Dewpoint	Mithilfe des CMC III Temperatur-/Luft- feuchte-Sensor bestimmter Taupunkt.

Tab. 59: Einstellungen in der Unterebene "Condensate Prevention"

8 Bedienung

Parameter	Erläuterung
Offset	Sicherheitszugabe zum gemessenen Tau- punkt, ab dem die Kondensat-Verhinde- rung aktiviert wird.
Calculated Dewpoint	Berechneter Taupunktwert inkl. Offset.
IT Supply Air Min	Minimale Server-Eintrittstemperatur.
Tempera- ture IT Supply	Sollwert für die Server-Eintrittstemperatur.
IT Supply Alarm	Maximale Server-Eintrittstemperatur
Command	Aktivieren bzw. deaktivieren der Konden- sat-Verhinderungsfunktion. "On": Die Kondensat-Verhinderungsfunkti- on wird aktiviert (Standardeinstellung). "Off": Die Kondensat-Verhinderungsfunkti- on wird deaktiviert.

Tab. 59: Einstellungen in der Unterebene "Condensate Prevention"

Des Weiteren wird für die Kondensat-Verhinderungsfunktion noch folgender Parameter angezeigt:

Parameter	Erläuterung
Status	Aktueller Zustand der Kondensat-Verhin- derungsfunktion. "Off": Die Funktion ist nicht vorgewählt (Command hat die Einstellung "Off"). "On": Die Funktion ist vorgewählt (Com- mand hat die Einstellung "On"). "Active": Die Funktion ist vorgewählt und aktiv (die Anpassung des Sollwerts wird durchgeführt). "Error": Die Funktion wurde vorgewählt, aber der Feuchtesensor ist nicht verfügbar. "Alarm": Der Grenzwert für die Alarmmel- dung wurde erreicht.

Tab. 60: Anzeigen in der Unterebene "Condensate Prevention"

Unterebene "Coolant Delta T-mode"

In diesem Modus erfolgt die Reglung des LCP anhand der Rücklauftemperatur des Kühlmediums. Der Regelkugelhahn regelt nach einem konstanten Sollwert für die Rücklauftemperatur im Kühlmediumkreis (Kühlmedium-Austrittstemperatur).

Die Zulufttemperatur bewegt sich innerhalb der dynamischen Vorgabe. Es kann ein Temperaturbereich gewählt werden, in dem sich die Server-Eintrittstemperatur (IT Supply Temperature) bewegen darf (IT Supply Low Temperature und IT Supply High Temperature). Wird dieser Bereich verlassen, regelt das LCP **sofort** nach der statischen Zulufttemperatur (IT Supply Fallback). Dies entspricht der Regelung auf konstante Server-Eintrittstemperatur mit dem dafür vorgegebenen Sollwert.

Nach einer einstellbaren Zeit (Retry Time Set) regelt das LCP wieder nach der dynamischen Temperatur des Kühlmediums. Wird nun wieder eine Überschreitung festgestellt, regelt das LCP wieder nach der statischen Temperatur. Das LCP versucht dreimal wieder in den dynamischen Bereich zu kommen. Ist auch der 3. Versuch fehlgeschlagen, bleibt das LCP in der statischen Regelung und sendet einen Alarm.

Parameter	Erläuterung
DescName	(Ausführliche) Beschreibung der Regelung nach der Rücklauftemperatur des Kühlme- diums.
Coolant Re- turn Target	Sollwert für die Rücklauftemperatur im Kühlmediumkreis.
IT Supply Low Tempe- rature	Minmale Server-Eintrittstemperatur.
IT Supply High Tempe- rature	Maximale Server-Eintrittstemperatur.
Command	Aktivieren bzw. deaktivieren der kühlmedi- umseitigen Delta T-Regelung. "On": Die Regelung nach der Rücklauftem- peratur des Kühlmediums wird aktiviert (Standardeinstellung). "Off": Die Regelung nach der Rücklauftem- peratur des Kühlmediums wird deaktiviert.
Retry Time Set	Zeit, nach der das LCP versucht, auf die Regelung nach der Rücklauftemperatur des Kühlmediums umzuschalten (nach Über- bzw. Unterschreiten der Sollwerte).

Tab. 61: Einstellungen in der Unterebene "Coolant Delta T-mode"

Des Weiteren werden für die Regelung nach der Rücklauftemperatur des Kühlmediums noch folgender Parameter angezeigt:

Parameter	Erläuterung
Coolant Supply	Aktueller Wert der Vorlauftemperatur im Kühlmediumkreis.
Coolant Re- turn	Aktueller Wert der Rücklauftemperatur im Kühlmediumkreis.
Flowrate	Aktueller Kühlmediumdurchfluss.
IT Supply Temperature	Aktuelle Server-Eintrittstemperatur.
IT Supply Fallback	Server-Eintrittstemperatur, wenn eine Re- gelung nach der Rücklauftemperatur des Kühlmediums nicht möglich ist. Diese ent- spricht dem Wert "IT Supply Temp.".

Tab. 62: Anzeigen in der Unterebene "Coolant Delta T-mode"

Parameter	Erläuterung
Retry	Anzahl der Versuche zum Umschalten auf die Regelung nach der Rücklauftemperatur des Kühlmediums.
Retry Time	Bereits abgelaufene Zeit seit dem letzten Versuch des Umschaltens.
Status	Aktueller Status der Regelung nach der Rücklauftemperatur des Kühlmediums. "Off": Regelung ist nicht aktiviert. "On": Regelung ist aktiviert.

Tab. 62: Anzeigen in der Unterebene "Coolant Delta T-mode"

Unterebene "Condensate Control"

Bei deaktiviertem Remote-Betrieb kann mithilfe der Taupunkt-Regelung eventuell anfallendes Kondensat durch Erhöhung der Lüfterdrehzahl am (optionalen) Tropfenabscheider abgeschieden werden.

Hinweis:

Die Taupunkt-Regelung darf nur aktiviert werden, wenn sowohl ein Tropfenabscheider als auch ein Temperatur-/Luftfeuchte-Sensor im Gerät installiert sind.

Diese Funktion muss über das "Command" aktiviert sein und ist nur bei der Regelung auf die Server-Eintrittstemperatur möglich, nicht jedoch bei kühlmediumseitiger Delta T-Regelung. Die Funktion kann auch nicht gemeinsam mit der Kondensat-Verhinderung verwendet werden.

Zur Bestimmung des aktuellen Taupunkts ist ein CMC III Temperatur-/Luftfeuchte-Sensor (7030.111) im LCP notwendig.

Der Sensor wird über die "Real Devices" im Baum auf der Website des LCP verwaltet.

Der gemessene Taupunktwert wird mit der Vorlauftemperatur des Kühlmediums verglichen, die von einem Temperatursensor gemessen wird (vol. Abschnitt 8.5.4

Temperatursensor gemessen wird (vgl. Abschnitt 8.5.4 "Coolant").

Liegt die gemessene Vorlauftemperatur des Kühlmediums für 5 Sekunden um wenigstens 1° unter dem Taupunkt, wird die Taupunkt-Regelung aktiviert. Liegt die aktuelle Lüfterdrehzahl bei aktivierter Taupunkt-Regelung unter 65 %, wird die Lüfterdrehzahl für eine Minute fest auf 65 % geregelt. Dies dient zur Ableitung der Kondensat-Tröpfchen vom Wärmetauscher bzw. Tropfenabscheider.

Nach Ablauf einer Minute schaltet das System wieder in den Automatik-Modus, d. h. die Lüfter werden je nach Einstellung über die Temperatur- oder die Druckdifferenz geregelt, die Minimaldrehzahl darf dabei 65 % nicht unterschreiten.

Die Taupunkt-Regelung ist nicht mehr aktiv, wenn die Vorlauftemperatur des Kühlmediums oberhalb des Taupunkts liegt. Dann wird die Lüfterdrehzahl nicht mehr auf einen Minimalwert begrenzt.

Parameter	Erläuterung
DescName	(Ausführliche) Beschreibung der Taupunkt- Regelung.
Temperature	Mithilfe des CMC III Temperatur-/Luft- feuchte-Sensors bestimmte Temperatur.
Relative Hu- midity	Mithilfe des CMC III Temperatur-/Luft- feuchte-Sensors bestimmte Feuchte.
Dewpoint	Mithilfe des CMC III Temperatur-/Luft- feuchte-Sensors bestimmter Taupunkt.
Coolant Supply	Aktuelle Vorlauftemperatur des Kühlmedi- ums.
Fan Delay	Verzögerungszeit der Lüfter in Sekunden.
Command	Aktivieren bzw. deaktivieren der Taupunkt- Regelung. "On": Die Taupunkt-Regelung wird aktiviert (Standardeinstellung). "Off": Die Taupunkt-Regelung wird deakti- viert.

Tab. 63: Einstellungen in der Unterebene "Condensate Control"

Des Weiteren wird für die Taupunkt-Regelung noch folgender Parameter angezeigt:

Parameter	Erläuterung
Status	Aktueller Zustand der Taupunkt-Regelung. "Off": Die Funktion ist nicht vorgewählt (Command hat die Einstellung "Off"). "On": Die Funktion ist vorgewählt (Com- mand hat die Einstellung "On"). "Active": Die Funktion vorwählt und aktiv (die Anpassung des Sollwerts wird durch- geführt). "Error": Die Funktion wurde vorgewählt, aber der Feuchtesensor ist nicht verfügbar. "Alarm": Der Grenzwert für die Alarmmel- dung wurde erreicht.

Tab. 64: Anzeigen in der Unterebene "Condensate Control"

8.6 Registerkarte Configuration

Der Inhalt der Registerkarte **Configuration** hängt davon ab, welche Komponente im Navigationsbereich angewählt wurde.

Bei Anwahl des Gesamtsystems "Processing Unit" (oberster Knoten) stehen folgende Konfigurationsmöglichkeiten zur Verfügung:

- Gruppenrahmen Network

- TCP/IP
- SNMP
- HTTP
- File Transfer
- Console
- SMTP
- Modbus/TCP
- Server Shutdown

8 Bedienung

- OPC-UA
- Gruppenrahmen System
 - Syslog
 - Units and Languages
 - Details
 - Date/Time
 - General
 - Firmware Update
 - WebCam
 - Mobile
- Gruppenrahmen Security
 - Groups
 - Users
 - LDAP
 - RADIUS
- Gruppenrahmen Cooling System
 - Air Configuration
 - Water Configuration
 - General Configuration

Die Konfigurationsmöglichkeiten des Liquid Cooling Package im Gruppenrahmen **Cooling System** werden im Detail in den Abschnitten 7.2.3 "Anpassen der Einheiten" und 7.2.4 "LCP Configuration" beschrieben. Alle weiteren Konfigurationsmöglichkeiten sind in der Montage-, Installations- und Bedienungsanleitung des IoT Interface 3124.300 beschrieben.

S

Bei Anwahl einer untergeordneten Komponente, z. B. dem "Liquid Cooling Package", stehen über die entsprechenden Symbole folgende Konfigurationsmöglichkeiten zur Verfügung:

- Configure All Alarms
- Configure Device Rights

Diese Konfigurationsmöglichkeiten werden im Detail in der Montage-, Installations- und Bedienungsanleitung zum IoT Interface 3124.300 beschrieben.

8.7 Door Opening

Für die Bedienung eines Door Control Modules 7030.500 oder 7030.501 mit einem Display erfolgt die Bedienung über die zehn Schaltflächen von "1" bis "0". Hierzu müssen die Zugangsberechtigungen in der Access Configuration festgelegt werden.

Die Zugangsberechtigungen für die zu überwachende Tür werden auf der Registerkarte **Access Configuration** definiert.

Zum Hinzufügen eines neuen Zugangscodes:

- Wählen Sie im Konfigurationsbereich die Registerkarte Access Configuration an.
- Klicken Sie unter der Liste der bereits hinterlegten Zugangscodes bzw. Transponderkarten im Gruppenrahmen Access auf der Registerkarte Access Configuration auf die Schaltfläche Add.

Es erscheint der Dialog "Access Configuration", analog wie zum Konfigurieren einer Zugangsberechtigung.

Zum Konfigurieren eines Zugangscodes:

- Markieren Sie im Gruppenrahmen Access die Zeile des gewünschten Eintrags, um die hierfür hinterlegten Einstellungen anzupassen.
- Klicken Sie auf die Schaltfläche Edit. Es erscheint der Dialog "Access Configuration".

Parameter	Erläuterung
Туре	Konfiguration eines Zugangs. Hier muss der Eintrag "Keycode" angewählt sein.
Code	Nummer der Schaltfläche, mit der der Aus- gang geschaltet werden soll. Es kann hier nur eine Stelle angegeben werden, ein Zahlencode mit mehreren Stellen wird nicht unterstützt.
User	Auswahl des zum Zugang berechtigten Benutzers. Der Benutzer muss zuvor ent- sprechend angelegt worden sein.
Information	Indviduelle Zusatzinformation zum Zugang. Dieser Text wird zusätzlich zum User im Logfile des Climate Controllers eingetra- gen.

Tab. 65: Gruppenrahmen Parameters

Alle angeschlossenen Zugangsmodule werden im Gruppenrahmen **Tree** angezeigt. Hier erfolgt nun die Zuordnung, welche Griffe prinzipiell mit der Zugangsberechtigung geschaltet werden können.

- Aktivieren Sie in der Baumdarstellung ggf. eine übergeordnete Gruppe (z. B. alle "Real Devices", um alle zugewiesenen Griffe mit der Zugangsberechtigung öffnen zu können.
- Deaktivieren Sie ggf. einzelne Griffe einer Gruppe durch erneutes Anklicken.

_ Hinweis:

Dem Zugangscode muss ein User zugewiesen werden. Ansonsten ist der Zugang auch bei Eingabe des korrekten Zugangscodes nicht möglich.

Zum Löschen eines Zugangscodes:

- Markieren Sie die Zeile des gewünschten Eintrags, den Sie löschen möchten.
- Markieren Sie ggf. mit gedrückter "Umschalt"-Taste einen weiteren Eintrag. Alle Zeilen vom zuerst gewählten Eintrag bis einschließlich dem zuletzt gewählten Eintrag werden ausgewählt.
- Markieren Sie ggf. mit gedrückter "Strg"-Taste weitere Einträge. Diese Zeilen werden einzeln zur Auswahl hinzugefügt.

Klicken Sie auf die Schaltfläche Delete. Alle ausgewählten Zugangsberechtigungen werden ohne Sicherheitsabfrage direkt gelöscht.

8.8 Tasks

Mit Hilfe der Tasks können die Status aller angeschlossenen Komponenten abgefragt und logisch miteinander verknüpft werden. Die Bedeutungen aller Status sind bei den Einstellmöglichkeiten der einzelnen Komponenten beschrieben (vgl. Abschnitt 8.5 "Registerkarte Monitoring"). Zusätzlich können auch Datumswerte in die Verknüpfungen eingebunden werden. Bei einer Statusänderung der sog. Trigger Expression können dann unterschiedliche Aktionen ausgelöst werden. So kann z. B. bei Auftreten einer Alarmmeldung des integrierten Zugangssensors an einem bestimmten Wochentag eine entsprechende E-Mail versendet werden. Der aktuelle Status eines Tasks kann nicht über SNMP abgefragt werden. Dies ist nur bei einem Virtual Device möglich. Tasks sind allgemeingültig, daher sind die auf der Registerkarte Tasks angezeigten Informationen unabhängig von den im linken Bereich der Bildschirmseite angewählten Komponenten.

Beispiel: Bei Überschreiten der oberen Grenztemperatur der Servereintrittstemperatur, bei der eine Alarmmeldung ausgegeben wird, sollen die Lüfter abgeschaltet werden.

- Aktivieren Sie im Gruppenrahmen **Details** die Checkbox "Enable" und vergeben Sie im Feld **Name** einen aussagekräftigen Namen für den Task.
- Wählen Sie im Gruppenrahmen **Trigger Expression** den Operator "=".
- Klicken Sie unterhalb des "="-Operators auf den Eintrag "No Variable Selected".
- Wählen Sie in der Dropdown-Liste "Nature" den Eintrag "Variable" (standardmäßig vorgewählt).
- Wählen Sie in der Dropdown_Liste "Device" den Eintrag "[2] Liquid Cooling Package".
- Wählen Sie in der Dropdown-Liste "Variable" den Eintrag "Air.Server-In.Status".
- Stellen Sie im Trigger Expression unterhalb der gewählten Variable "Air.Server-In.Status" den zugehörigen Wert ein, bei dem die Lüfter ausgeschaltet werden sollen, z. B. "Too High".
- Wählen Sie dann im Gruppenrahmen **Details** als Aktion in der Dropdown-Liste den Eintrag "Set Variable Value".
- Klicken Sie auf die Schaltfläche Setup. Der Dialog "Configure Set Variable Value" wird angezeigt.
- Wählen Sie bei Device wiederum den Eintrag "[2] Liquid Cooling Package".
- Wählen Sie in der Dropdown-Liste "Variable" den Eintrag "Config.Fans.Command".
- Wählen Sie in der Dropdown-Liste "Value on True" den Eintrag "Off".

 Wählen Sie in der Dropdown-Liste "Value on False" aus Sicherheitsgründen den Eintrag "Automatic". Hierdurch werden die Lüfter wieder eingeschaltet, wenn der Status der Servereintrittstemperatur nicht mehr den Status "Too High" hat.

Wenn zusätzlich zum Abschalten der Lüfter auch der Regelkugelhahn im Kühlmediumkreislauf geschlossen werden soll, muss ein weiterer Task für die gleiche Bedingung angelegt werden.

Durch die bei Statusänderungen ausgelösten Aktionen können manuell durchgeführte Einstellungen, z. B. zur Betriebsart der Lüfter, überschrieben werden.

Beispiel: Sie haben einen Task definiert, der beim Überschreiten der oberen Grenztemperatur der Servereintrittstemperatur ein Abschalten der Lüfter bewirkt. Hierzu wird der Variablen Config.Fans.Command der Wert Off zugewiesen, wenn der Temperature.Status den Wert Too High hat ("Value on True"). Des Weiteren wird der Variablen Config.Fans.Command der Wert Automatic zugewiesen, wenn der Temperature.Status nicht den Status Too High hat, ("Value on False"). Fällt die Servereintrittstemperatur nun nach Überschreiten des oberen Grenzwerts wieder in die vorgegebenen Grenzen zurück, werden die Lüfter vom Task immer in den Automatikmodus geschaltet, unabhängig von der zuvor gewählten Betriebsart der Lüfter (z. B. "Manual", "Off" oder "Full").

Hinweis:

Weiterführende Informationen zum Erstellen von Tasks finden Sie in der Montage-, Installations- und Bedienungsanleitung des IoT Interface 3124.300.

9 Updates und Datensicherung

Der Zugriff über FTP auf den Climate Controller des Liquid Cooling Package ist zum Durchführen von Software-Updates sowie zur Datensicherung notwendig. Daher kann der Zugriff generell gesperrt und nur für die o. g. Aufgaben kurzzeitig freigeschaltet werden.

Hinweis:

Weiterführende Hinweise zu diesen Themen finden Sie in der Montage-, Installations- und Bedienungsanleitung des IoT Interface 3124.300.

Rittal empfiehlt, in regelmäßigen Abständen eine Datensicherung der Konfiguration des Climate Controllers durchzuführen.

In der Datei "cmclllsave.cfg" (ab Softwareversion V3.11.00) sind die Einstellungen und Konfigurationen aller angeschlossenen Komponenten gespeichert, wie sie auch auf den Registerkarten Monitoring und Configuration aktuell für die einzelnen Sensoren angezeigt werden kann.

Bei einem zweiten Liquid Cooling Package des selben Typs kann diese Konfigurationsdatei zur Übernahme analog ins Upload-Verzeichnis gelegt werden. Dieses LCP wird dann automatisch analog konfiguriert wie das LCP, von dem diese Datei gespeichert wurde.

Hinweis:

Es ist nicht möglich, eine Konfigurationsdatei, die von einem Climate Controller mit älterer Softwareversion gespeichert wurde, auf einen Climate Controller mit einer neueren Softwareversion zu übernehmen.

10 Troubleshooting

10.1 Allgemeine Störungen

Störort	Störung	Störungsursache	Auswirkung	Abhilfe
Regelkugel- hahn	Der Climate Controller zeigt Durch- fluss, obwohl der Regelku- gelhahn als geschlossen angezeigt wird	Verschmutzung des Regel- kugelhahns	Der Durchflussmesser zeigt einen Wert an. Es existiert ein ∆T.	Regelkugelhahn mehrfach über den Climate Controller öffnen und schließen, evtl. lösen sich dadurch Ver- schmutzungen. Der Einbau eines Filters in die Anlage zur Sicherstellung der geforderten Wasserqua- lität ist dringend zu empfeh- len. Ggf. das komplette Liquid Cooling Package stromlos schalten und nach ca. 1 Minute neu starten.
Flowmeter (Durchfluss- messer)	Der Climate Controller zeigt keinen Durchfluss, obwohl der Regelkugel- hahn als ge- öffnet angezeigt wird	Verschmutzung des Flow- meters (Durchflussmesser)	Der Durchflussmesser zeigt keinen Wert an, obwohl der Regelkugelhahn offen ist und ein ΔT existiert.	Flowmeter muss von autori- siertem Personal ausgebaut und gereinigt bzw. ersetzt werden. Der Einbau eines Filters in die Anlage zur Si- cherstellung der geforderten Wasserqualität ist dringend zu empfehlen.
Liquid Cooling Package	Das Liquid Cooling Package re- gelt nicht und befindet sich im Notbetrieb	Die Kommunikation zum Cli- mate Controller ist unterbro- chen	Das 2-Wege-Ventil ist geöff- net und die Lüfter laufen bei voller Drehzahl.	Drücken des SET-Tasters für ca. 2 Sekunden am Cli- mate Controller. Kann die Kommunikation so wieder- hergestellt werden, geht das System danach in den Re- gelbetrieb über. Ist dies nicht der Fall, starten Sie das Sys- tem neu bzw. setzen Sie sich mit der Service-Abteilung in Verbindung, falls der Fehler weiterhin besteht.
	Das Gerät bringt nicht die geforderte Kühlleistung	Luft im Wasserkreislauf	Im Wasserkreislauf vorhan- dene Luft sorgt dafür, dass das Wasser nicht richtig im Wärmetauscher zirkulieren und somit auch keine Wär- me abführen kann.	Entlüftung des Wärmetau- schers

10 Troubleshooting

Störort	Störung	Störungsursache	Auswirkung	Abhilfe
Liquid Cooling Package	Das Gerät bringt nicht die geforderte Kühlleistung	Erhöhte Druckverluste auf der Rohrnetzseite z. B. durch vollgesetzte Filter oder falsch eingestellte Durch- flussbegrenzer	Die externen Pumpen schaf- fen es nicht, eine genügend große Kaltwassermenge durch das Liquid Cooling Package zu pumpen.	Filter reinigen, Durchfluss- mengenbegrenzer korrekt einstellen.
		Luftführung nicht korrekt	Die gekühlte Luft strömt durch unverschlossene Öff- nungen hindurch am Equip- ment vorbei zur Schrankrückseite.	Sowohl ungenutzte Höhe- neinheiten in der 19"-Ebene als auch seitliche Schlitze und Öffnungen müssen durch Blindplatten oder Schaumstoffstreifen abge- dichtet werden. Beides ist im Zubehörprogramm verfüg- bar.
		Pumpe falsch dimensioniert.	Zu geringer Durchfluss.	Pumpe größer dimensionie- ren.
		Hydraulischer Abgleich nicht hergestellt	Zu geringer Wasserdurch- fluss im LCP.	Hydraulischen Abgleich durch Abgleichventile oder Ähnliches herstellen.

Um Störungen durch das Kaltwassersystem vorzubeugen, sind folgende Abhilfen zu schaffen.

	Störort	Störung	Störungsursache	Auswirkung	Abhilfe
	Kaltwasser- system	Korrosion und Ver- schmutzun- gen im Kaltwasser- Kreislauf	Unzureichende Reinigung nach Neuinstallationen	Unsauberes und aggressi- ves Wasser führt zur Schwä- chung des Materials und zu Fehlfunktionen. Bauteile wie 2-Wege-Ventil und Durch- flussmesser werden durch Verschmutzungen stark in ihrer Funktion beeinträchtigt.	Bei der Erstinstallation sind die Rohrnetze und Anlagen- bauteile vor dem Einbau des Liquid Cooling Package zu spülen.
			Fehlende Impfung des Was- sers mit Korrosions- schutzadditiven		Die Rittal GmbH & Co. KG empfiehlt den Einbau von Fil- tern und die Impfung des Wassers mit geeigneten Korrosions- und ggf. Frost- schutzadditiven. Die emp- fohlenen Hinweise zur Wasserqualität finden Sie im Abschnitt 16.1 "Informatio- nen zum Füll- und Ergän- zungswasser".
			Altanlagen mit vorhandenen Verschmutzungen		Bei der Integration in kriti- sche bestehende Kaltwas- sernetze empfiehlt sich der Einsatz eines Wasser/Was- ser-Wärmetauschers, der ei- nen zweiten Wasserkreis bildet.

10.2 Meldungen am Display

Meldung	Störungsursache
Rotation error fan X	Drehzahl des Lüfters Nr. X fehlerhaft.
Fail. temp. sensor 1.1	Temperatursensor 1 Server- eintrittstemperatur Oben feh- lerhaft.
Fail. temp. sensor 2.1	Temperatursensor 2 Server- eintrittstemperatur Mitte feh- lerhaft.
Fail. temp. sensor 3.1	Temperatursensor 3 Server- eintrittstemperatur Unten feh- lerhaft.
Fail. temp. sensor 1.2	Temperatursensor 1 Server- austrittstemperatur Oben fehlerhaft.
Fail. temp. sensor 2.2	Temperatursensor 2 Server- austrittstemperatur Mitte feh- lerhaft.
Fail. temp. sensor 3.2	Temperatursensor 3 Server- austrittstemperatur Unten fehlerhaft.
Fail. water sensor X	Wassertemperatursensor Vorlauf (1) bzw. Rücklauf (2) fehlerhaft.
Water leakage	Leckagemeldung.
Fail. temp. serv-in	Mittelwert der drei Tempera- tursensoren Servereintritts- temperatur unterhalb dem eingestellten Grenzwert.
Fail. temp. serv-out	Mittelwert der drei Tempera- tursensoren Serveraustritts- temperatur unterhalb dem eingestellten Grenzwert.
Failure motor valve	Regelkugelhahn fehlerhaft.
Failure flow meter	Durchfluss fehlerhaft.

Bei einer Konfigurationsänderung des LCP bzw. des Climate Controller, wie z. B. dem Anschließen eines zusätzlichen Sensors, wird dies an der Multi-LED angezeigt (vgl. Abschnitt 8.1.1 "Hardware der Regeleinheit des Liquid Cooling Package"). Diese Meldungen müssen dann entsprechend quittiert werden (vgl. Abschnitt 8.2.2 "Quittieren von Meldungen").

11 Inspektion und Wartung

Während der Inspektion und Wartung des Geräts muss die persönliche Schutzausrüstung, bestehend wenigstens aus wasserdichten Schutzhandschuhen sowie einer Schutzbrille, getragen werden.

Das Liquid Cooling Package ist weitestgehend wartungsfrei. Bei verschmutztem Kühlwasser ist der Einsatz eines zusätzlichen, externen Schmutzfängers mit Feinsieb notwendig. Dieser ist regelmäßig zu reinigen.

- Regelmäßige Sichtprüfung auf Undichtigkeiten (Jahresrhythmus).
- Regelmäßige Sichtprüfung des Wärmetauschers auf Verschmutzung. Bei Bedarf reinigen.
- Regelmäßige Sichtprüfung der Bodenwanne auf Verschmutzung. Bei Bedarf reinigen.

Hinweis:

Die nominale Lebensdauer der eingebauten Lüfter liegt bei 40.000 Betriebsstunden bei einer Umgebungstemperatur von 40 °C. Eine Störung an einem Lüftermodul wird am optionalen Display oder am Statusbildschirm des Climate Controllers angezeigt (bei Anschluss des Liquid Cooling Package an ein Netzwerk).

Beim Auftreten von Leckagen besteht Verletzungsgefahr durch ausgetretenes Kühlmedium, insbesondere Glykol. Tragen Sie die persönliche Schutzausrüstung, nehmen Sie ausgelaufenes Kühlmedium mit geeignetem Lappen oder Bindemittel auf und beseitigen Sie den Grund für Leckagen umgehend.

Vorsicht!

Beim Reinigen der Bodenwanne besteht Verletzungsgefahr durch ausgetretenes Kühlmedium, insbesondere Glykol. Tragen Sie die persönliche Schutzausrüstung.

Vorsicht!

Gefahr durch Kühlmedien, insbesondere Frostschutzmittel! Tragen Sie die persönliche Schutzausrüstung.

Vorsicht!

Gefahr durch hohe Luftgeschwindigkeiten und hohen Schalldruckpegel! Tragen Sie Schutzbrille, Gehörschutz und ggf. ein Haarnetz oder eine Kopfbedeckung.

Vorsicht!

Gefahr durch hohe Lufttemperaturen! Führen Sie keine Arbeiten am Gerät durch, wenn Ihr Herz-Kreislauf-System nicht vollständig intakt ist oder Krankheitssymptome auftauchen.

12 Lagerung und Entsorgung

Vorsicht! Beschädigungsgefahr! Der Luft/Wasser-Wärmetauscher darf während der Lagerung nicht Temperaturen über +70 °C ausgesetzt werden.

Während der Lagerung muss der Luft/Wasser-Wärmetauscher aufrecht stehen.

Die Entsorgung kann im Rittal Werk durchgeführt werden.

Sprechen Sie uns an.

Entleerung:

Bei Lagerung und Transport unterhalb des Gefrierpunktes ist der Luft/Wasser-Wärmetauscher komplett zu entleeren.

13 Technische Daten

13.1 Leistungsklasse 30 kW

13.1.1 LCP Rack Flush CW und LCP Inline Protruding CW (CW = Chilled Water)

Technische Daten		
Bezeichnung/BestNr.	LCP Rack Flush 30 CW / 3314.130 (1000 mm Tiefe)	
Bezeichnung/BestNr.	LCP Rack Flush 30 CW / 3314.230 (1200 mm Tiefe)	
Bezeichnung/BestNr.	LCP Inline Protruding 30 CW / 3314.530 (1200 mm Tiefe)	
Bemessungsspannung	200240 V/1~	346415 /3~
Bemessungsfrequenz	50/60 Hz	•
Bemessungsleistung	3,15 kW	
Gesamtkühlleistung L24W15 (H ₂ O)	30 kW (102364 BTU/h)	
Betriebstemperaturbereich Umgebung	1050 °C	
Kühlmedium	siehe Abschnitt 16.1	
Temperaturbereich Kühlmedium	1030 °C, nicht kondensierend	
Zulässiger Druck Wasserkreislauf	1 MPa	
Durchfluss	0100 l/min	
Füllvolumen	7,21	
Geräuschpegel	88 dB(A)	
Schutzart	IP10B	
Gewicht	225 kg (3314.130), 230 kg (3314.230/530)	

Tab. 66: Technische Daten Ausführungen LCP Rack Flush CW und LCP Inline Protruding CW (30 kW)

13.1.2 LCP Inline Flush CW (CW = Chilled Water)

Technische Daten			
Bezeichnung/BestNr.	LCP Inline Flush 30 CW /3314.540 (1200 mm Tiefe/2000 mm Hö		
Bezeichnung/BestNr.	LCP Inline Flush 30 CW /3314.542 (1200 mm Tiefe/2200 mm Höhe		
Bemessungsspannung	200240 V/1~	346415 /3~	
Bemessungsfrequenz	50/60 Hz		
Bemessungsleistung	2,15 kW		
Gesamtkühlleistung L24W15 (H ₂ O)	30 kW (102364 BTU/h)		
Betriebstemperaturbereich Umgebung	1050 °C		
Kühlmedium	siehe Abschnitt 16.1	siehe Abschnitt 16.1	
Temperaturbereich Kühlmedium	1030 °C, nicht kondensierend		
Zulässiger Druck Wasserkreislauf	1 MPa		
Durchfluss	0100 l/min		
jilvolumen 7,2 l			

Tab. 67: Technische Daten LCP Inline Flush CW (30 kW)

Technische Daten	
Geräuschpegel	86 dB(A)
Schutzart	IP10B
Gewicht	220 kg (3314.540), 240 kg (3314.542)

Tab. 67: Technische Daten LCP Inline Flush CW (30 kW)

13.2 Leistungsklasse 35 kW

13.2.1 LCP Inline Flush CWG (CWG = Chilled Water Glycol)

Technische Daten		
Bezeichnung/BestNr.	LCP Inline Flush Glykol 35 CWG / 3314.550 (1200 mm Tiefe)	
Bemessungsspannung	200240 V/1~ 346415 /3~	
Bemessungsfrequenz	50/60 Hz	
Bemessungsleistung	2,15 kW	
Gesamtkühlleistung L24W15 (H ₂ O)	35 kW (119425 BTU/h)	
Betriebstemperaturbereich Umgebung	1050 °C	
Kühlmedium	siehe Abschnitt 16.1	
Temperaturbereich Kühlmedium	1030 °C, max. Entfeuchtungsrate 20 l/h	
Zulässiger Druck Wasserkreislauf	1 MPa	
Durchfluss	080 l/min	
Füllvolumen	10,5	
Geräuschpegel	86 dB(A)	
Schutzart	IP10B	
Gewicht	280 kg	

Tab. 68: Technische Daten LCP Inline Flush CWG (35 kW)

13.3 Leistungsklasse 44 kW

13.3.1 LCP Rack Flush CWG und LCP Inline Protruding CWG (CWG = Chilled Water Glycol)

Technische Daten			
Bezeichnung/BestNr.	LCP Rack Flush Glykol 44 CWG / 3314.250 (1200 mm Tiefe)		
Bezeichnung/BestNr.	LCP Inline Protruding Glykol 44 CWG / 3314.570 (1200 mm Tief		
Bemessungsspannung	200240 V/1~ 346415 /3~		
Bemessungsfrequenz	50/60 Hz		
Bemessungsleistung	3,15 kW	3,15 kW	
Gesamtkühlleistung L24W15 (H ₂ O)	44 kW (150134 BTU/h)		
Betriebstemperaturbereich Umgebung	1050 °C		
Kühlmedium	siehe Abschnitt 16.1		
Temperaturbereich Kühlmedium	1030 °C, max. Entfeuchtungsrate 20 l/h		

Tab. 69: Technische Daten Ausführungen LCP Rack Flush CWG und LCP Inline Protruding CWG (44 kW)

13 Technische Daten

Technische Daten	
Zulässiger Druck Wasserkreislauf	1 MPa
Durchfluss	080 l/min
Füllvolumen	10,5 l
Geräuschpegel	88 dB(A)
Schutzart	IP10B
Gewicht	280 kg

Tab. 69: Technische Daten Ausführungen LCP Rack Flush CWG und LCP Inline Protruding CWG (44 kW)

13.4 Leistungsklasse 53 kW

13.4.1 LCP Rack Flush CW und LCP Inline Protruding CW (CW = Chilled Water)

Technische Daten		
Bezeichnung/BestNr.	LCP Rack Flush 53 CW / 3314.260 (1200 mm Tiefe)	
Bezeichnung/BestNr.	LCP Inline Protruding 53 CW / 3314.560 (1200 mm Tiefe)	
Bemessungsspannung	200240 V/1~ 346415 /3~	
Bemessungsfrequenz	50/60 Hz	
Bemessungsleistung	3,15 kW	
Gesamtkühlleistung L24W15 (H ₂ O)	53 kW (180844 BTU/h)	
Betriebstemperaturbereich Umgebung	1050 °C	
Kühlmedium	siehe Abschnitt 16.1	
Temperaturbereich Kühlmedium	1030 °C, nicht kondensierend	
Zulässiger Druck Wasserkreislauf	1 MPa	
Durchfluss	0140 l/min	
Füllvolumen	10,4 I	
Geräuschpegel	88 dB(A)	
Schutzart	IP10B	
Gewicht	260 kg	

Tab. 70: Technische Daten Ausführungen LCP Rack CW und LCP Inline CW (53 kW)

14 Ersatzteile

Ersatzteile können direkt auf der Internetseite von Rittal unter folgender Adresse bestellt werden: – http://www.rittal.com/de_de/spare_parts

Legende

- 1 Elektronikmodul
- 2 Climate Controller
- 10 Lüftermodul
- 11 Lüfterverrieglung
- 80 CMC Feuchtesensor
- 90 Regelkugelhahn
- 100 Leckagesensor
- 110 Sensor Durchflussmesser
- 160 Temperaturfühler
- 170 Temperaturfühler Vorlauf
- 180 Temperaturfühler Rücklauf

15 Zubehör

15 Zubehör

Artikel	BestNr.	Anzahl / VE	Bemerkungen
Abschottung vertikal (Schaumstoffstreifen), für Schrankbreite 600mm, für Anbau Seitenwand	3301.380	1	
Abschottung vertikal (Schaumstoffstreifen), für Schrankbreite 600mm, für Anbau Liquid Cooling Package	3301.370	1	
Abschottung vertikal, (Schaumstoffstreifen) für Schrankbreite 800mm, für Anbau Seitenwand	3301.390	1	
Abschottung vertikal (Schaumstoffstreifen), für Schrankbreite 800mm, für Anbau Liquid Cooling Package	3301.320	1	
Luftleitblech für VX IT, B x H: 600 x 2000 mm, dyn.	5302.004	1	
Luftleitblech für VX IT, B x H: 600 x 2000 mm, std.	5302.016	1	
Luftleitblech für VX IT, B x H: 800 x 2000 mm, dyn.	5302.005	1	
Luftleitblech für VX IT, B x H: 800 x 2000 mm, std.	5302.014	1	
Anschlussschlauch unten/oben	3311.040	2	Länge 1,8 m, kann eingekürzt werden.
Anschlusskabel, dreiphasig	7856.025	1	Globale Version
Touchscreen-Display, farbig	3311.030	1	
Lüftermodul	3313.016	1	
Kondensatpumpe	3314.012	1	
Rückseitiger Adapter für LCP Inline CW, B x H x T: 300 x 2000 x 200 mm, RAL 7035	3312.081	1	
Rückseitiger Adapter für LCP Inline CW, B x H x T: 300 x 2200 x 200 mm, RAL 7035	3312.082	1	
Rückseitiger Adapter für LCP Inline CW, B x H x T: 300 x 2000 x 200 mm, RAL 9005	3312.083	1	
Rückseitiger Adapter für LCP Inline CW, B x H x T: 300 x 2200 x 200 mm, RAL 9005	3312.084	1	
Anreihung LCP CW Protruding an TS IT Vorne und hinten, jeweils 4 x Anreihverbinder und eine Dichtung	3311.089	1	Bei beidseitiger Anreihung des LCP werden zwei Anreihungs- sets benötigt.
Anreihung LCP Flush an VX IT VX IT Anreihverbinder, außen Anreihspalt 3 mm, zur Montage von Schottwand, einteililg	5301.310	1	Bei beidseitiger Anreihung des LCP werden zwei Anreihungs- sets benötigt.
Anreihung LCP Flush an TS IT VX IT/TS, TS IT Anreihverbinder, außen, Stahlblech verzinkt	5301.312	1	Bei beidseitiger Anreihung des LCP werden zwei Anreihungs- sets benötigt.

Tab. 71: Zubehörliste – Liquid Cooling Package

Artikel	BestNr.	Anzahl / VE	Bemerkungen
CMC III Temperatursensor	7030.110	1	Temperatursensor zur Installati- on z. B. im Kaltgang. Der Temperaturfühler besteht aus der Sensorelektronik und ei- nem NTC Fühler, mit einem 1,8 m langem Kabel, welches an der Sensorelektronik aufgesteckt ist. Die Elektronik selbst kann mit ei- nem CMC III CAN-Bus Verbin- dungskabel RJ45 10 (7030.095), an das LCP angebunden werden
CMC III Differenzdrucksensor	7030.150	1	Der Differenzdrucksensor wird für die optionale Regelung der Lüfterdrehzahl auf die Druckdiffe- renz benötigt. Die Elektronik selbst kann mit ei- nem CMC III CAN-Bus Verbin- dungskabel RJ45 10 (7030.095), an das LCP angebunden werden
Befestigungskit Seitenwand LCP	3313.089	1	Bestehend aus 6 x Befestigungs- winkel, Schrauben und Beipack- zettel.

Tab. 71: Zubehörliste – Liquid Cooling Package

Neben den eingebauten Sensoren kann über die CAN-Busschnittstelle eine breite Palette von Sensoren, Aktoren und Systemen zur Zugangsüberwachung angeschlossen werden. Eine detaillierte Auflistung über das gesamte Zubehörprogramm finden Sie unter der Internetadresse www.rittal.de.

16.1 Informationen zum Füll- und Ergänzungswasser

Um Systemschäden zu vermeiden und einen sicheren Betrieb zu gewährleisten, sollte für Füll- und Ergänzungswasser die Bestimmungen der VDI 2035 eingehalten werden.

Erlaubte Kühlmedien

 Salzhaltiges und salzarmes Wasser in Anlehnung an die VDI 2035 plus max. 50 Vol.% Antifrogen-N (siehe Tab. 72).

Empfohlenes Kühlmedium

 Salzarmes Wasser (VE-Wasser) in Anlehnung an die VDI 2035. Es kann bis zu max. 50 Vol.% Antifrogen-N zugesetzt werden (siehe Tab. 72). Andere Zusätze dürfen nur in Absprache mit Rittal verwendet werden.

	Salzarm	Salzhaltig
Elektr. Leitfähigkeit bei 25 °C [µS/cm]	< 100	1001.500
Aussehen	Frei von sedimentierenden Stoffen	
pH-Wert bei 25 °C	8,210,0	
Sauerstoff [mg/l]	< 0,1	< 0,02

Tab. 72: Wasserspezifikationen

16.2 Kennlinien

Hinweis:

Unter der folgenden Internetadresse finden Sie den Rittal IT Cooling Calculator. Hier können Sie unter Angabe verschiedener Parameter die Kühlleistung der LCPs errechnen.

- https://www.rittal.com/com_en/it-cooling-

calculator/index.php?lang=de

Abb. 127: Leistungskurve LCP Typ 3314.130, 3314.230, 3314.530

Legende

Serverablufttemperatur 30 °C, 60 l/min Serverablufttemperatur 36 °C, 60 l/min Serverablufttemperatur 42 °C, 60 l/min Serverablufttemperatur 50 °C, 60 l/min Serverablufttemperatur 30 °C, 20 l/min Serverablufttemperatur 36 °C, 20 l/min Serverablufttemperatur 42 °C, 20 l/min Serverablufttemperatur 50 °C, 20 l/min

Bedingungen

Anzahl Lüftermodule: 4 Luftvolumenstrom: 5000 m³/h Luftdruck: 1,013 bar Abs. Luftfeuchte: 8 g/kg

Abb. 128: Leistungskurve LCP Typ 3314.540, 3314.542

Legende

Serverablufttemperatur 30 °C, 60 l/min
Serverablufttemperatur 36 °C, 60 l/min
Serverablufttemperatur 42 °C, 60 l/min
 Serverablufttemperatur 50 °C, 60 l/min
 Serverablufttemperatur 30 °C, 20 I/min
 Serverablufttemperatur 36 °C, 20 l/min
 Serverablufttemperatur 42 °C, 20 I/min
 Serverablufttemperatur 50 °C, 20 I/min

Bedingungen

Anzahl Lüftermodule: 4 Luftvolumenstrom: 5000 m³/h Luftdruck: 1,013 bar Abs. Luftfeuchte: 8 g/kg

Abb. 129: Leistungskurve LCP Typ 3314.250, 3314.570

Legende

Serverablufttemperatur 30 °C, 60 l/min
 Serverablufttemperatur 36 °C, 60 l/min
 Serverablufttemperatur 42 °C, 60 l/min
 Serverablufttemperatur 50 °C, 60 l/min
 Serverablufttemperatur 30 °C, 20 l/min
 Serverablufttemperatur 36 °C, 20 l/min
 Serverablufttemperatur 42 °C, 20 l/min
 Serverablufttemperatur 50 °C, 20 l/min

Bedingungen

Anzahl Lüftermodule: 4 Luftvolumenstrom: 5000 m³/h Luftdruck: 1,013 bar Abs. Luftfeuchte: 8 g/kg

Abb. 130: Leistungskurve LCP Typ 3314.550

Legende

Serverablufttemperatur 30 °C, 60 l/min
 Serverablufttemperatur 36 °C, 60 l/min
Serverablufttemperatur 42 °C, 60 l/min
Serverablufttemperatur 50 °C, 60 l/min
 Serverablufttemperatur 30 °C, 20 l/min
 Serverablufttemperatur 36 °C, 20 l/min
 Serverablufttemperatur 42 °C, 20 l/min
 Serverablufttemperatur 50 °C, 20 I/min

Bedingungen

Anzahl Lüftermodule: 4 Luftvolumenstrom: 4700 m³/h Luftdruck: 1,013 bar Abs. Luftfeuchte: 8 g/kg

Abb. 131: Leistungskurve LCP Typ 3314.260, 3314.560

Legende

Serverablufttemperatur 30 °C, 125 l/min
Serverablufttemperatur 36 °C, 125 l/min
 Serverablufttemperatur 42 °C, 125 l/min
Serverablufttemperatur 50 °C, 125 l/min
 Serverablufttemperatur 30 °C, 20 l/min
 Serverablufttemperatur 36 °C, 20 I/min
 Serverablufttemperatur 42 °C, 20 l/min
 Serverablufttemperatur 50 °C, 20 l/min

Bedingungen

Anzahl Lüftermodule: 6 Luftvolumenstrom: 7900 m³/h Luftdruck: 1,013 bar Abs. Luftfeuchte: 8 g/kg

16.2.1 Druckverlust

Bei Verwendung eines Wasser-Antifrogen-N Gemischs (67 % Wasser, 33 % Glykol) muss der in den folgenden Abbildungen angegebene Druckverlust mit dem Faktor 1,2 multipliziert werden, der angegebene Volumenstrom mit dem Faktor 1,5.

Abb. 132: Druckverlust im LCP CW in der Ausführung "30 kW"

Abb. 134: Druckverlust im LCP CWG

16.3 Übersichtszeichnungen

Abb. 135: Übersichtszeichnung LCP Inline Flush, 30 kW

Legende

- Y1 Netzwerkanschluss 1/2
- Y2 Displayanschluss
- Y3 Lüfterschalter
- Y4 Bus-Anschluss
- Y5 USB-H-Anschluss
- Y6 Netzanschluss
- Y7 Bus-Anschluss
- Y8 Spannungsversorgung optionale Kondensatpumpe (3312.012 und 3314.012)
- Y9 Steuerleitung optionale Kondensatpumpe X3 (3312.012)
- Y10 Alarmanschluss Climate Controller
- Y11 Steuerleitung optionale Kondensatpumpe X7 (3314.012)
- Y12 Schmelzsicherungen F1, F2, F3
- Y13 SET-Taster Climate Controller
- Y14 Reset-Taster Climate Controller
- Y15 Multi-LED
- Y16 USB-C-Anschluss

- X1 Wasserrücklauf 11/2"
- X2 Wasservorlauf 11/2"
- X3 Rücktür gelocht
- X4 Lüfter
- X5 Seitenwand vorne
- X6 Seitenwandabdeckung hinten
- X7 Elektrische Anschlüsse vorne
- X8 Seitenwand hinten
- X9 Fronttür gelocht
- X10 Elektrische Anschlüsse hinten
- X11 Position des Displays
- X12 Kondensatablauf
- T Tiefenabstand ohne Griffe
- B Gesamtbreite
- H Gesamthöhe

Abb. 136: Übersichtszeichnung LCP Inline Protruding, 44 kW

Legende

- Y1 Netzwerkanschluss 1/2
- Y2 Displayanschluss
- Y3 Lüfterschalter
- Y4 Bus-Anschluss
- Y5 USB-H-Anschluss
- Y6 Netzanschluss
- Y7 Bus-Anschluss
- Y8 Spannungsversorgung optionale Kondensatpumpe (3312.012 und 3314.012)
- Y9 Steuerleitung optionale Kondensatpumpe X3 (3312.012)
- Y10 Alarmanschluss Climate Controller
- Y11 Steuerleitung optionale Kondensatpumpe X7 (3314.012)
- Y12 Schmelzsicherungen F1, F2, F3
- Y13 SET-Taster Climate Controller
- Y14 Reset-Taster Climate Controller
- Y15 Multi-LED
- Y16 USB-C-Anschluss

- X1 Wasserrücklauf 11/2"
- X2 Wasservorlauf 11/2"
- X3 Rücktür gelocht
- X4 Lüfter
- X5 Seitenwand vorne
- X6 Seitenwandabdeckung hinten
- X7 Elektrische Anschlüsse vorne
- X8 Seitenwand hinten
- X9 Fronttür geprägt
- X10 Elektrische Anschlüsse hinten
- X11 Position des Displays
- X12 Kondensatablauf
- X13 Prallflächenabscheider mit Taupunktsensor
- T Tiefenabstand ohne Griffe
- B Gesamtbreite
- H Gesamthöhe

Abb. 137: Übersichtszeichnung LCP Rack, 30 kW

Legende

- Y1 Netzwerkanschluss 1/2
- Y2 Displayanschluss
- Y3 Lüfterschalter
- Y4 Bus-Anschluss
- Y5 USB-H-Anschluss
- Y6 Netzanschluss
- Y7 Bus-Anschluss
- Y8 Spannungsversorgung optionale Kondensatpumpe (3312.012 und 3314.012)
- Y9 Steuerleitung optionale Kondensatpumpe X3 (3312.012)
- Y10 Alarmanschluss Climate Controller
- Y11 Steuerleitung optionale Kondensatpumpe X7 (3314.012)
- Y12 Schmelzsicherungen F1, F2, F3
- Y13 SET_Taster Climate Controller
- Y14 Reset-Taster Climate Controller
- Y15 Multi-LED
- Y16 USB-C-Anschluss

- X1 Wasserrücklauf 11/2"
- X2 Wasservorlauf 11/2"
- X3 Rücktür geprägt
- X4 Lüfter
- X5 Seitenwand vorne
- X6 Seitenwandabdeckung hinten
- X7 Elektrische Anschlüsse vorne
- X8 Seitenwand hinten
- X9 Fronttür geprägt
- X10 Elektrische Anschlüsse hinten
- X11 Position des Displays
- X12 Kondensatablauf
- T Tiefenabstand ohne Griffe
- B Gesamtbreite
- H Gesamthöhe

16.4 Stromlaufplan

Rittal Liquid Cooling Package

109

Rittal Liquid Cooling Package

16.5 Anschlussschema

Abb. 138: Anschlussschema

16.6 Wasserlaufplan

Abb. 140: Wasserlaufplan

Legende

- 1 Temperaturfühler Vorlauf
- 2 Durchflusssensor Rücklauf
- 3 Regelkugelhahn Vorlauf
- 4 Wärmetauscher
- 5 Rückschlagventil Rücklauf
- 6 Temperaturfühler Rücklauf

16.7 Konformitätserklärung

Vereinfachte EU-Konformitätserklärung / Simplified EU Declaration of Conformity

Wir

We

Rittal GmbH & Co. KG, Auf dem Stützelberg, 35745 Herborn

erklären hiermit, dass die Produkte hereby declare that the products

LCP Liquid Cooling Package Chilled Water

SK 3314.xxx

(Artikel gemäß diesem Typenschlüssel / Types according to this typecode)

Serial name	Local version	Generation	Coolant loop	Capacity class	Version	Mounted fan modules	Width	Height	Depth	Finish color	Option display	Option condensate pump	Option condensate management	Option stainless steel coolant circuit
LCP	G	8	Α	1	R	1	3	S	Α	7	0	0	0	0
	Ν			2	Ι	2		В	В	9	D	С	С	1
				3	Р	3		Х	С	Х				
					М	4			х					
					N	5								
						6								

folgenden Richtlinien entsprechen / conform to the following directives:

2006/42/EG Maschinenrichtlinie – 2006/42/EC machinery directive 2014/30/EU EMV-Richtlinie – 2014/30/EU EMC directive 2011/65/EU, (EU) 2015/863 RoHS-Richtlinie - 2011/65/EU, (EU) 2015/863 RoHS Directive

Bei einer nicht mit uns abgestimmten Änderung der Maschine verliert diese EU-Konformitätserklärung ihre Gültigkeit.

This EU declaration of conformity shall become null and void when the assembly is subjected to any modification that has not met with our approval.

Die vollständige und unterschriebene EU-Konformitätserklärung erhalten Sie auf der Produktseite der Rittal Homepage <u>www.rittal.com</u>.

The complete and signed EU declaration of conformity is available at the product site of Rittal homepage www.rittal.com.

SOFTWARE & SERVICE

IT-INFRASTRUKTUR

17 Aufbereitung und Pflege des Kühlmediums

Je nach Art der zu kühlenden Einrichtung werden an das Kühlwasser im Rückkühlsystem bestimmte Forderungen bezüglich seiner Reinheit gestellt. Entsprechend seiner Verunreinigung sowie der Größe und Bauweise der Rückkühlanlagen kommt dann ein geeignetes Verfahren zur Aufbereitung und/oder Pflege des Wassers in Anwendung. Die häufigsten Verunreinigungen und gebräuchlichen Verfahren für deren Beseitigung in der Industriekühlung sind:

Art der Verunreini- gung	Verfahren
Mechanische Verun- reinigung	Filterung von Wasser über: Siebfilter, Kiesfilter, Patronenfilter, Anschwemmfilter, Magnetfilter
Zu hohe Härte	Enthärtung des Wassers durch lo- nenaustausch
Mäßiger Gehalt an mechanischen Verun- reinigungen und Här- tebildnern	Impfung des Wasses mit Stabili- satoren bzw. Dispergiermitteln
Mäßiger Gehalt an chemischen Verunrei- nigungen	Impfung des Wassers mit Passi- vatoren und/oder Inhibitoren
Biologische Verunrei- nigungen, Schleim- bakterien und Algen	Impfung des Wassers mit Biozi- den

Tab. 73: Verunreinigungen des Kühlwassers und Maßnahmen zur Beseitigung

Hinweis:

Im Interesse des auslegungsgerechten Betriebes einer Rückkühleinrichtung, die auf mindestens einer Seite mit Wasser betrieben wird, sollte die Beschaffenheit des verwendeten Zusatzes bzw. Systemwassers nicht wesentlich von der Aufstellung hydrologischer Daten im Abschnitt 16.1 "Informationen zum Füll- und Ergänzungswasser" abweichen.

18 Frequently Asked Questions (FAQ)

Wo sind generelle Infos zu den LCPs zu finden? Bedienungsanleitungen, technische Daten und Zeichnungen sind unter www.Rittal.de zu finden.

Des Weiteren finden Sie den IT Cooling Calculator auf unsere Homepage. Unter Angabe verschiedener physikalischer Parameter wird die Kühlleistung der LCPs berechnet und kann als .pdf gespeichert werden.

In welchen Leistungsbereichen gibt es das Liquid Cooling Package von Rittal?

Die Kühlleistung eines Luft/Wasser-Wärmetauschers ist im Wesentlichen abhängig von Vorlauftemperatur und Volumenstrom des Wassers sowie der Luftleistung der verwendeten Lüfter. Es gibt vier Leistungsklassen:

Wasser-Versionen

Bis 30 kW Kühlleistung mit den Gerätetypen 3314.130/230/530/540/542 (bei 15 °C Wasservorlauf, 20 K luftseitigem Δ T, 5000 m³/h Luftvolumenstrom)

Bis 53 kW mit den Gerätetypen 3314.260/560 (bei 15 °C Wasservorlauf, 20 K luftseitigem Δ T, 7900 m³/h Luftvolumenstrom)

Wasser-Glykol-Versionen

Bis 35 kW Kühlleistung mit den Gerätetypen 3314.250/ 570 (bei 15 °C Wasservorlauf, 20 K luftseitigem Δ T, 5000 m³/h Luftvolumenstrom)

Bis 28 kW Kühlleistung mit dem Gerätetyp 3314.550 (bei 15 °C Wasservorlauf, 20 K luftseitigem Δ T, 4700 m³/h Luftvolumenstrom)

Wichtig für die korrekte Beurteilung dieser Angaben ist auch, bei welchem ΔT (Temperaturdifferenz zwischen Lufteintritt Server und Luftaustritt Server) diese Werte ermittelt wurden.

Moderne Server wie 1 HE-Dual CPU Systeme oder Bladeserver können ein ΔT bis 25 °C aufweisen.

Bitte beachten Sie hierzu die Empfehlungen der Server-Hersteller.

Sind für den Einsatz mit dem Liquid Cooling Package spezielle Komponenten erforderlich?

Alle Komponenten, die dem "Front to Back"-Kühlprinzip folgen, können ohne Einschränkung in Verbindung mit dem Liquid Cooling Package verwendet werden. Die Verwendung von IT-Equipment mit seitlicher Luftführung kann durch Verwendung von speziellen Luftleitsystemen realisiert werden.

Jedes Rittal Serverrack, das bisher konventionell gekühlt wurde, kann nach Umstellung auf geschlossene Türen mit einem Liquid Cooling Package (Rackkühlung) gekühlt werden, d. h. es ist möglich, Standardracks nachzurüsten und anschließend an das Liquid Cooling Package anzureihen.

Racks mit perforierten Türen können mit LCP Inline Systemen (Reihenkühlung) gekühlt werden.

Durch das seitliche Anbringen des Liquid Cooling Package bleibt der Serverschrank unangetastet, d. h. alle Höheneinheiten sind in ihrer kompletten Tiefe vollständig nutzbar. Weiterhin ist durch richtiges Versetzen von Schottelementen auch eine ausreichende Kühlung für seitlich durchströmte Geräte (Switche o. ä.) möglich.

Welche LCP Varianten gibt es?

Für sehr große Verlustleistungen empfiehlt sich die direkte Rackkühlung mit LCP. Hierbei ist das Serverrack mit geschlossenen Front- und Rücktüren versehen. Für diese Form der Kühlung eignet sich die Variante "LCP Rack CW" 3314.130/230/250/260.

Für kleine bis mittlere Verlustleistungen wird die Reihenkühlung mit LCP eingesetzt.

Hierbei werden Serverracks mit perforierten Front- und Rücktüren meistens in einer Reihe (Kaltgang/Warmgang) aufgestellt und die LCPs dazwischen montiert. Für diese Form der Kühlung eignet sich die Variante "LCP Inline CW" 3314.530/540/542/550/560/570.

Warum gibt es bei der Reihenkühlung vorgezogene und rackbündige LCP Inline CW?

Vorgezogene LCP Inline Geräte (3314.530/560/570) ragen 200 mm vor den angereihten Serverracks in den Kaltgang hinein und stehen bis zu einer Kühlleistung von 53 kW zur Verfügung (35 kW für die Glykol-Version). Vorteil ist hier, dass die Lüfter der Geräte frei nach links und rechts, direkt vor die Serverracks, ausblasen können. Hierbei bildet sich ein Kaltluftvorhang vor den perforierten Serverracks, so dass das 19"-Equipment die Kaltluft ungehindert ansaugen kann.

Wird keine Gang-Schottung verwendet, verhindert der Kaltluftvorhang das Ansaugen von eventuell rezirkulierter Luft des Warmganges.

Das bündige LCP Inline (3314.540/542/550) ist bündig mit den angereihten Serverracks und bildet mit diesen eine durchgehende Front. Die Kühlleistung des Gerätes beträgt 30 kW (28 kW für die Glykol-Version).

Das bündige LCP Inline wird eingesetzt, wenn aufgrund eines schmalen Kaltganges der Fluchtweg durch vorgezogene Geräte nicht beeinträchtigt werden darf.

Lässt sich die Wärmemengenabfuhr in Abhängigkeit der Verlustwärme regeln?

Regelgröße für das Liquid Cooling Package ist die vor die 19"-Ebene eingeblasene Lufttemperatur. Dieser

Wert ist den Bedienungsanleitungen der Hersteller zu entnehmen.

Der voreingestellte Sollwert des LCPs beträgt 22 °C. Dieser Wert wird dann konstant gehalten, unabhängig von einer Veränderung des Kühlleistungsbedarfs.

Dies geschieht durch entsprechendes automatisches Öffnen und Schließen des 2-Wege-Ventils. Zusätzlich wird über die Differenz zwischen Serveraustrittstemperatur und der Solltemperatur die notwendige Lüfterleistung angepasst.

Somit kühlt das Liquid Cooling Package immer genauso viel wie notwendig, ohne Energie zu verschwenden. Weiterhin werden damit Kondensat und Trocknungsprobleme, die durch zu starkes Kühlen entstehen, reduziert.

Wie erfolgt der Luftstrom im Schrank oder in der Schrankreihe und welche Vorteile ergeben sich daraus?

In der Regel wird in Serverschränken das "Front to Back"-Kühlprinzip verwendet, d. h. kalte Luft wird auf der Schrankvorderseite zur Verfügung gestellt, die im Schrank eingebauten Geräte besitzen eigene Lüfter, die diese Luft ansaugen, intern zur Kühlung verwenden und diese dann erwärmt auf der Rückseite wieder ausblasen.

Durch die besondere, speziell an dieses weitverbreitete Kühlprinzip angepasste horizontale Luftführung des Liquid Cooling Package wird den Servern über die komplette Schaltschrankhöhe gleichmäßig gekühlte Luft zur Verfügung gestellt, d. h. alle Geräte erhalten unabhängig von ihrer Einbauposition im Schrank und ihrem Lastzustand ausreichend Kaltluft.

Es werden Temperaturgradienten vermieden, so dass eine extrem hohe Kühlleistung pro Schrank erzielt werden kann.

Kann das LCP Rack mit geöffneten/perforierten Racktüren betrieben werden?

Das Verhalten des Liquid Cooling Package beim Betreiben mit geöffneten Türen hängt im Wesentlichen von den vorherrschenden Umgebungsbedingungen ab. Bei geöffneter Vordertür wird sich die Kühlluft mit der Raumluft geringfügig vermischen, folglich sind in klimatisierten Räumen sehr wenige Kühlprobleme zu erwarten.

Insgesamt wird keine Wärme an den Raum abgegeben. Die Rücktür sollte im Betrieb nur kurzzeitig geöffnet werden, da der Kühlluftkreislauf unterbrochen wird und die Abwärme in den Raum abgegeben wird. Auf die Kühlung der Geräte im Schrank hat das allerdings keinen Einfluss.

Warum ist das Liquid Cooling Package als Luft/ Wasser-Wärmetauscher für seitlichen Anbau ausgeführt?

Wichtig war es, ein Hochleistungskühlsystem zu entwickeln, das auch den Anforderungen der nächsten Jahre gerecht wird. Dies ist nur durch eine, auf die Bedürfnisse der Geräte angepasste Kühlluftführung zu erreichen. Hauptproblem der Kühlung mit Luft aus dem Doppelboden, mit Dach oder Bodenwärmetauschern ist die Luftführung.

Kalt von unten oder oben in den Schrank einströmende Luft verändert ihre Temperatur auf Grund von Rezirkulationen sehr massiv. In Rechenzentren wurden Temperaturdifferenzen von "unten" nach "oben" von bis zu 20 °C gemessen, d. h. ein "unten" im Schrank eingebauter Server kann um bis zu 20 °C "bessere" Temperaturbedingungen vorfinden als ein "oben" im Schrank eingebauter.

Somit muss bei dieser Art der Kühlung immer mit deutlich niedrigeren Lufttemperaturen gearbeitet werden, um alle Systeme im Rack ausreichend zu versorgen. Bei einer Kühlluftversorgung von der "Seite" entsteht diese Problematik erst gar nicht - die Kühlung ist deutlich effektiver und genauer, die den Geräten zur Verfügung stehende Luft kann auf 1 - 2 °C gehalten werden. Durch die Realisierung als "eigener" Schrank ist das System konsequent gegen Leckagerisiken abgesichert. Alle wasserführenden Komponenten befinden sich au-Berhalb des eigentlichen Serverschrankes. Dort erfolgt auch der Anschluss an das Kühlwassernetz im Boden. Weiterhin hat Rittal langjährige Erfahrung im Bereich Luft/Wasser-Wärmetauscher. Diese Erfahrungen sind in den Bau des Liquid Cooling Package eingeflossen. Durch diese Vorsichtsmaßnahmen kann selbst bei einer - an sich sehr unwahrscheinlichen - Leckage nie Wasser in den Bereich der elektronischen Komponenten gelangen.

Durch das "schlanke" Maß von nur 300 mm wird auch das Raster im Rechenzentrum nicht unterbrochen. Die Schranktiefe wird nicht erhöht, somit bleiben auch Gänge im Rechenzentrum in ihrer vollen Breite erhalten.

Wie erfolgt der Wasseranschluss an das Liquid Cooling Package?

Der Anschluss an das Gebäudenetz oder den Rückkühler erfolgt wahlweise von unten oder von oben. Im LCP ist eine G 1½" AG-Verschraubung mit Außengewinde installiert.

Das zu installierende Gegenstück muss ein 90° Bogen mit Überwurfmutter sein, da sich der 90° Bogen im Gerät aus Platzgründen selbst nicht um seine eigene Achse drehen lässt.

Als Zubehör kann man aber einen passendes Schlauchpaar (Vorlauf, Rücklauf), zum Anschluss des LCP, mitbestellen. Die Artikelnummer des Anschlussschlauches ist 3311.040. Das Schlauchpaar hat eine Länge von jeweils 1,8 m. Bei Bedarf ist der Schlauch auf der Baustelle auf die gewünschte Länge kürzbar.

Können in einem Rechenzentrum luftgekühlte und wassergekühlte Serverschränke nebeneinander betrieben werden?

Selbstverständlich, für die LCPs muss lediglich die Kühlwasserinstallation vorhanden sein.

Dies hat den Vorteil, dass die vorhandene Raumklimatisierung nicht weiter belastet wird. Somit können mit Liquid Cooling Package-Systemen "Hot-Spots" im Rechenzentrum abgefangen werden, ohne die Klimaanlage erweitern zu müssen.

Welche Dimensionen sind für das Liquid Cooling Package verfügbar?

Das Liquid Cooling Package selbst hat die Maße 300 x 2000 x 1000/1200 mm (B x H x T). Es kann jeder Rittal Schrank in den Maßen H x T 2000 x 1000/1200 mm (H x T) unabhängig von der Breite angereiht werden. Andere Abmessungen auf Anfrage.

Muss das Liquid Cooling Package gewartet werden?

Das Liquid Cooling Package selbst ist grundsätzlich wartungsfrei. Alle Komponenten sind auf eine sehr hohe Lebensdauer ausgelegt. Im Fehlerfall erfolgt eine Meldung über den Alarmausgang des Climate Controllers. Empfehlenswert ist es jedoch, eventuell vor dem LCP installierte Wasserfilter in bestimmten Intervallen zu prüfen und ggf. zu reinigen.

Die Verrohrung im und zum LCP sollte einmal jährlich auf Dichtheit überprüft werden.

Welche Vorteile bringt eine wassergekühlte Lösung gegenüber einer luftgekühlten Lösung im Rechenzentrum?

Der Einsatz wassergekühlter Schränke ermöglicht die kontrollierte, effiziente und kostensparende Kühlung von Verlustleistungen, die mit herkömmlicher Klimatisierung nicht zu realisieren wäre.

Nur so ist es möglich, den im Schrank vorhandenen Platz auch wirklich zu nutzen und nicht gezwungen zu sein, auf Grund von Klimatisierungsproblemen "halbleere" Schränke aufstellen zu müssen.

Daraus resultieren ganz erhebliche Einsparungen bei den Investitionskosten und bei den Betriebskosten eines Rechenzentrums.

Ist für die Installation ein Doppelboden erforderlich? Wenn ja, was ist die notwendige Höhe?

Ein Doppelboden ist für die Führung der Kühlwasserrohre nicht erforderlich, grundsätzlich können die Rohre auch in Kanälen im Boden verlegt werden.

Das LCP ist stets auch für einen Wasseranschluss von oben vorbereitet.

Soll die Wasserversorgung über einen Doppelboden erfolgen ist eine Mindesthöhe von 300 mm nötig, um die benötigten Biegeradien der Anschlussschläuche oder Verrohrung zu realisieren.

Lassen sich LCP gekühlte Schränke auch aneinanderreihen?

Im Prinzip ist ein Liquid Cooling Package nur ein "schmaler" Schrank, d. h. alles Zubehör zur Anreihung lässt sich verwenden. Somit sind LCP gekühlte Systeme uneingeschränkt anreihbar.

Wie wird im Liquid Cooling Package die Kondensatbildung verhindert?

Kondensat kann nur dort entstehen, wo Luft unter den Taupunkt abgekühlt wird.

Bei Verringerung der Lufttemperatur verliert diese ihre Fähigkeit Wasser aufzunehmen bzw. zu "halten"; überschüssiges Wasser wird als Kondensat am kältesten Punkt, im Falle des LCP am Wärmetauscher, abgegeben.

Das Liquid Cooling Package arbeitet im Regelfall mit Wassertemperaturen über dem Taupunkt , Kondensatbildung ist somit ausgeschlossen.

Sollte das Kühlwassersystem mit Wasservorlauftemperaturen unterhalb des Taupunktes betrieben werden, gibt es verschiedene Möglichkeiten eine Erhöhung der Wasservorlauftemperatur (zum LCP) zu erreichen.

Durch Nutzung eines Wasser/Wasser-Wärmetauschers kann ein bestehendes Kaltwassersystem in einen Primär- und einen Sekundärkreislauf aufgesplittet werden. Das Wasser aus der Kühlquelle, welches unterhalb des Taupunktes liegt, zirkuliert im Primärkreis. Im Sekundärkreis wird das Vorlaufwasser zum LCP auf eine höheres Temperaturniveau – oberhalb des Taupunkts – gehoben und somit die Kondensatbildung im LCP verhindert. Ein weiterer Vorteil eines Wasser/Wasser-Wärmetauschers ist die Verringerung der Wassermenge im Sekundärkreis. Bei einer sehr seltenen Leckage im Sekundärkreis kann nur die geringe Wassermenge, die im Sekundärkreis vorhanden ist, austreten.

Weiterhin kann die Wasserqualität im Sekundärkreis selbst definiert werden, so dass evtl. stark verschmutztes Primärwasser nicht in die Rechenzentrumsumgebung gelangen kann. Zur Erhöhung der Wasservorlauftemperatur über den Taupunkt kann weiterhin ein Mischer oder eine Einspritzschaltung im Wasserkreis zu den LCPs installiert werden.

Hierbei wird dem kalten Vorlaufwasser warmes Wasser aus dem Rücklauf beigemischt und so ebenfalls eine Wasservorlauftemperatur über dem Taupunkt erreicht.

Warum ist die Verhinderung von Kondensatbildung im LCP sinnvoll?

Kondensatbildung bedeutet gleichzeitig eine Entfeuchtung der Luft.

Grundsätzlich besteht die Gesamtkühlleistung des LCPs aus einem Betrag an latenter und sensibler Kühlleistung. Wird mit Wasservorlauftemperaturen über dem Taupunkt gearbeitet findet keine Entfeuchtung (Kondensatbildung) statt, der Anteil der latenten Kühlleistung ist dabei null. Die komplette sensible Kühlleistung kann zur Abkühlung der Luft verwendet werden.

Bei der Entfeuchtung wird mit der latenten Kühlleistung Energie benötigt, die nicht mehr zum Kühlen der Serverzuluft zur Verfügung steht. Der Anteil der sensiblen Kühlleistung fällt somit geringer aus und bedeutet somit weniger Kühlleistung bei gleichem Energieeinsatz.

Dies bedeutet generell eine geringere Energieeffizienz, auch müssen für die gleiche Kühlleistung zusätzliche Geräte verwendet werden.

Wie erfolgt die Kondensatabfuhr im LCP?

In der Wasser-Glykol-Version (CWG) des LCPs (3314.250/550/570) wird ein Tropfenabscheider hinter dem Wärmetauscher installiert. Werden Kondensattropfen vom Luftstrom erfasst, werden sie dort abgeschieden und nach unten in die Kondensatwanne geleitet. Trotz Kondensatmanagement wird aber eine Wasservorlauftemperatur über dem Taupunkt empfohlen, um Kondensatbildung zu vermeiden.

Die 30 kW Version des LCPs (3314.130/230/530/540/ 542) und die 53 kW Version des LCPs (3314.260/560) verfügen über kein Kondensatmanagement. Das Kondensat, das am Wärmetauscher anfällt, wird nach unten in die Kondensatwanne geleitet. Von dort erfolgt eine Ableitung mittels eines Kondensatschlauches nach außen.

Die Wasservorlauftemperatur muss bei diesen Geräten über dem Taupunkt liegen, um Kondensatbildung zu vermeiden.

Ist im LCP eine Kondensatpumpe eingebaut?

Nein, eine Kondensatpumpe ist serienmäßig nicht eingebaut, da die Geräte in den meisten Fällen oberhalb des Taupunktes betrieben werden. Bei Bedarf kann eine Kondensatpumpe 3314.012 vom Kunden erworben und bauseitig installiert werden. Wir empfehlen zusätzlich unser Kondensatmanagement (Prallflächenabscheider, Temperatur-/Feuchtesensor) – in den CWG-Versionen bereits vorhanden, bei allen anderen LCPs auf Anfrage.

Werden mehrere LCPs in einer Installation verbaut macht die Installation einer Kondensatpumpe in den jeweiligen LCPs keinen Sinn. Die serienmäßig drucklosen Kondensatabführungen der Geräte sollte in einem solchen Fall zentral zusammengeführt und das Kondensat über eine bauseitige installierte Doppelpumpenhebeanlage abgeführt werden.

Was ist beim Kondensatanschluss des LCPs zu beachten?

Der Kondensatablauf der LCP-Systeme darf nicht direkt an das Abwassersystem angeschlossen werden. Hier muss ein Geruchverschluss zwischen den Systemen installiert werden. Die Kondensatpumpe ist keine Absicherung gegen Rückstau und rückdrückendes Abwasser. Beim Anschluss der Kondensatwanne an das Abwassersystem sind die hierfür geltenden Regeln der Technik zu beachten.

Ist das LCP gegen Leckagen gesichert?

Ja, das LCP hat eine integrierte Leckageüberwachung. Sollte im Gerät übermäßig viel Flüssigkeit austreten wird dies über einen internen Sensor erkannt und gemeldet. Je nach Wunsch erfolgt nur eine Alarmierung oder, zusätzlich zur Alarmierung, wird das Regelventil des Gerätes sofort geschlossen um einen weiteren Kühlwassereintrag zu verhindern.

Wie wird im Liquid Cooling Package das Austrocknen der Luft verhindert?

Wird das LCP mit einer Wassertemperatur über dem Taupunkt betrieben findet keine Entfeuchtung und somit kein Trocknen der Luft statt.

Das System ist somit abhängig von der Feuchte die sich in der Umgebungsluft befindet.

In den meisten Fällen wird das Rechenzentrum über eine RLT-Anlage klimatisiert. Hierüber wird auch die relative Luftfeuchte geregelt, die dann über 30 % im unkritischen Bereich bzgl. statischer Aufladung liegt.

Warum bietet das LCP Rack die Möglichkeit, ein oder zwei Schränke zu kühlen?

Wichtigstes Konstruktionsprinzip war ein flexibles und optimal auf den enormen Luftbedarf moderner Server abgestimmtes Kühlsystem. Die Möglichkeit des "horizontalen" Kühlens beinhaltet in Kombination mit den gewählten Lüftern die Option, sowohl "rechts", "links" als auch "beidseitig" zu kühlen. Die Kühlung eines Serverracks mit zwei Liquid Cooling Packages hat weiterhin den Vorteil, komplette Redundanzen im System zu schaffen, ohne das 19"-Equipment weiter auszubauen.

Für welche Anwendungen und Situationen sollte man LCP Systeme verwenden?

Immer dann, wenn die Kühlkapazität der Raum-Klimaanlage nicht ausreicht, um die Wärmelasten von aktuellen Hochleistungsservern zu bewältigen. Bei einer optimalen Auslegung in neu geplanten Rechenzentren liegt diese Grenze bei etwa 1.000 – 1.200 W/m², in älteren Rechenzentren oft weit darunter.

Pro Rack sind damit im besten Fall maximal 4 kW zu verkraften. Dagegen erreichen mit Blade-Servern vollgepackte Racks heute schon das Vielfache davon. Aber auch in Anwendungen, wo keine Klimaanlage vor-

handen ist, stellt das Liquid Cooling Package eine Lösungsmöglichkeit dar, gerade in Kombination mit Rittal Rückkühlanlagen können schnell und einfach Klimalösungen für Hochleistungsclustersysteme geschaffen werden.

Welche zusätzliche Infrastruktur ist notwendig, um das LCP betreiben zu können?

Ergänzend zum Liquid Cooling Package sind eine Rohrführung bis zu den einzelnen Schränken und eine das Kühlwasser erzeugende Anlage erforderlich.

Bei Einzelschränken kann ein direkter Anschluss an das Kühlwasser erfolgen. Bei mehreren Schränken ist eine Kühlwasserverteilung vorzusehen.

Diese Infrastruktur entspricht weitgehend der, die heute in konventionell klimatisierten Rechenzentren bereits eingesetzt wird. Das kalte Wasser wird von Chillern bereitgestellt (mit entsprechender Redundanz speziell bei den Pumpen). Ein Kühlwassernetz im Rechenzentrum verteilt das Wasser auf Umluftkühlgeräte oder auch Deckenkühlgeräte.

Welche wesentlichen Nachteile der heutigen luftgekühlten Lösungen werden durch die Wasserkühlung aufgehoben?

Das Hauptproblem der konventionellen Kühlung ist die Führung sehr großer Kühlluftmengen durch Doppelböden, abgehängte Decken und innerhalb der Räume. Häufig kommt die kalte Luft aufgrund von komplexen Strömungsverhältnissen nicht in ausreichender Menge bis zu den Servern.

Es wird eigentlich genügend Kälte produziert und häufig liegt die Kühlleistung von Doppelbodenanlagen auch weit über der elektrischen Anschlussleistung der zu kühlenden Geräte aber trotzdem ist die Kühlung unzureichend. Dieser Effekt lässt sich damit erklären, dass sich die Kühlluft auf dem Weg zum Server schon zu stark durch Rezirkulationen erwärmt bzw. die Kühlluft gelangt durch einen "verstopften" Doppelboden erst gar nicht bis zum zu kühlenden IT Equipment.

Durch das Abführen der Verlustleistung aus dem Schrank mittels Wasser ist hier eine hervorragende Trennung zwischen zugeführter Kaltluft und abgeführter Wärmeenergie gegeben. Wasser kann auf Grund seiner stofflichen Eigenschaften fast 4000 mal "besser" Wärmeenergie transportieren als Luft. Sehr kleine Leitungen reichen bereits aus, um sehr große Wärmemengen zu transportieren.

Können die geteilten Seitenwände des VX IT Racks auch für das LCP verwendet werden?

Steht das LCP am Ende einer Rackreihe, muss die offene Seite des Gerätes mit einer Seitenwand verschlossen werden.

Die geteilten Seitenwände des VX IT können hierfür nicht verwendet werden.

Es müssen grundsätzlich einteilige, verschraubte Seitenwände genutzt werden.

Bis zu welcher Tiefe können Server eingebaut werden?

Moderne Serversysteme haben eine Tiefe von ca. 800 mm. Bei rackbasierter Kühlung mit LCP empfiehlt sich deshalb, die 19"-Ebene im Schrank so einzubauen, dass vorne und hinten genügend Abstand bis zur Tür bleibt.

Im vorderen Bereich sollte der Abstand (ideal ca. 200 mm) so groß sein, dass die kalte Zuluft ungehindert vor das IT Equipment eingeblasen werden kann. In Kombination mit dem seitlichen Platz zwischen 19"-Ebene und Liquid Cooling Package ist so ein ausreichend großer Platz für die ein- und ausströmende Luft gegeben. Die seitlichen Öffnungen müssen somit nicht in der Tiefe vollständig "frei" sein.

Wie wird das LCP elektrisch angeschlossen?

Der Standardanschluss des Gerätes ist U = $1 \sim 200-240$ V AC, 50/60 Hz; L1, N, PE, d. h. im Gerät sind grundsätzlich nur einphasige Komponenten verbaut. Am LCP selbst befindet sich eine 5-polige Anschlussbuchse auf der Rückseite des Gerätes.

Für den 1~ 200-240 V AC, 50/60 Hz Anschluss liegt ein 5-poliger Stecker im Zubehör des Gerätes bei. Im Stecker selbst ist die stromführende Phase bereits auf die beiden anderen Phasenklemmen gebrückt.

Wird das Liquid Cooling Package mit Hilfe eines 5-adrigen Anschlusskabels (346-415 V, 3~, N, PE;

DK 7856.025) an das Stromnetz angeschlossen, stehen jeweils drei separate Phasen (L1, L2, L3) zur Verfügung.

Beim Ausfall einer Anschlussphase wird das Gerat weiterhin mit Spannung versorgt und bleibt folgendermaßen in Betrieb:

Ausfall Phase L1:

Die Lüfter an den Positionen 1 und 2 schalten ab, die Lüfter an den Positionen 3 bis 6 bleiben weiterhin in Betrieb.

Ausfall Phase L2:

Die Lüfter an den Positionen 3 und 4 schalten ab, die Lüfter an den Positionen 1 und 2 sowie 5 und 6 bleiben weiterhin in Betrieb. Außerdem hat die optional installierte Kondensatpumpe keine Versorgungsspannung mehr.

Ausfall Phase L3:

Der Climate Controller hat keine Versorgungsspannung mehr. Die Lüfter an den Positionen 5 und 6 schalten ab. Wegen des fehlenden Sollwerts von der Regeleinheit gehen die Lüfter an den Positionen 1 bis 4 in einen sog. "Failsafe"-Betrieb mit 100 % Lüfterdrehzahl.

Wie erfolgt der Netzwerkanschluss des LCPs?

Auf der Rückseite des Gerätes befindet sich die RJ 45 Buchse für den Netzwerkanschluss.

Die voreingestellte IP Adresse aller LCPs ist 192.168.0.190.

Genaue Erläuterungen zum Herstellen der Netzwerkverbindung in der Bedienungsanleitung.

Hat das LCP installierte Nivellierfüsse?

Nein, das Gerät hat keine Nivellierfüsse. Werden diese benötigt können diese mit der Bestellnummer 4612.000 (Verstellhöhe 18 – 43 mm, Verstellung von außen) oder 5301.326 (Verstellhöhe 20 – 50 mm, Verstellung von innen und außen) bestellt werden.

Wie viele Lüftermodule sind in den LCPs serienmäßig eingebaut und wie viele Lüftermodule sind pro Gerät maximal möglich?

In den LCP Typen 3314.130/230/530 ist ab Werk **ein** Lüftermodul eingebaut. Maximal können fünf zusätzliche Lüftermodule eingebaut werden. Somit können also maximal 6 Lüftermodule eingebaut werden.

In den LCP Typen 3314.540/542/550 sind ab Werk **zwei** Lüftermodule eingebaut. Maximal können zwei zusätzliche Lüftermodule eingebaut werden. Somit können also maximal 4 Lüftermodule eingebaut werden.

In den LCP-Typen 3314.250/260/560/570 sind ab Werk vier Lüftermodule eingebaut. Maximal können zwei zu-

sätzliche Lüfter eingebaut werden. Somit können also maximal 6 Lüfter eingebaut werden.

Warum sind beim LCP Lüfter modular nachrüstbar?

Nach dem Bau eines Rechenzentrums (RZ) ist zu Beginn oft nicht die volle Kühlleistung der LCPs erforderlich. Es ist dabei ausreichend mit einer minimalen Lüfterbestückung pro LCP zu beginnen.

Dies spart Investitionskosten.

Steigt die Verlustleistung im RZ über die Zeit an, können je nach Bedarf zusätzliche Lüftermodule eingebaut und die Kühlleistung der LCPs erhöht werden (pay as you grow).

Bezogen auf mögliche Energieeinsparungen macht es aber Sinn, die Vollbestückung eines LCP mit Lüftermodulen direkt zu Beginn durchzuführen.

Beispielsweise erreichen die LCP Typen 3314.130/230 eine Kühlleistung von 30 kW (bei 4800 m³/h Luftvolumenstrom) mit drei integrierten Lüftermodulen . Für das Gesamtgerät wird dabei eine elektrische Leistungsaufnahme von 1168 W gemessen.

Werden in den Geräten aber sechs Lüftermodule bei gleichem Luftvolumenstrom (4800 m³/h) verwendet, reduziert sich deren Drehzahl gegenüber drei verwendeten Lüftermodulen deutlich.

Bei einer gleichbleibenden Kühlleistung von 30 kW wird für das Gesamtgerät eine elektrische Leistungsaufnahme von 669 W gemessen.

Dies bedeutet eine Einsparung von 43 % und wirkt sich somit direkt auf Einsparung von Betriebskosten aus.

Weiterhin kann über die Anzahl der eingebauten Lüftermodule eine Redundanz sichergestellt werden.

Aktivierung/Deaktivierung von Lüftermodulen

Werden zusätzliche Lüftermodule im LCP eingebaut müssen diese über das Web-Interface oder das Display am Gerät aktiviert werden. Erst dann werden die Lüfter in der Software angezeigt und überwacht.

Werden Lüftermodule ausgebaut, müssen diese deaktiviert werden, da ansonsten Fehlermeldungen generiert werden.

Welches Zubehör gibt es zum LCP?

Anschlussschlauch, 3311.040:

Der flexible Anschlussschlauch wird verwendet, um den "letzten Meter" von bauseitig installierter Verrohrung bis zum LCP zu überwinden.

Wird das LCP mit starrer Verrohrung angeschlossen, kann es bei ungenauer Verarbeitung zu Spannungen am Wasseranschluss und somit zu Undichtigkeiten kommen.

18 Frequently Asked Questions (FAQ)

Bei der Verwendung des flexiblen Anschlussschlauches kann dies vermieden werden.

Das Schlauchpaar hat eine Länge von jeweils 1,8 m. Bei Bedarf ist der Schlauch auf der Baustelle auf die gewünschte Länge kürzbar.

Ein Ende des Schlauches ist mit einem 90° Bogen und das andere Ende mit einem gerade Fitting versehen. An beiden Enden befindet sich eine G 1½" IG-Überwurfmutter.

Lüftermodul, 3313.016

Zur Erhöhung der Kühlleistung können einzelne Lüftermodule nachträglich in die LCPs eingebaut werden. Dadurch kann die Kühlleistung erhöht, eine Redundanz erreicht oder die elektrische Leistungsaufnahme des LCPs reduziert werden.

Touchscreen-Display, 3311.030

Das farbige Display bietet die Möglichkeit, wichtige Funktionen der LCPs direkt am Gerät zu überwachen und Einstellungen (Sollwert, Lüfter Aktivierung/Deaktivierung) vorzunehmen.

Das Display ist auch nachträglich im LCP integrierbar.

Rückwärtiger Adapter, 3312.081 (RAL 7035)/3312.083 (RAL 9005)

Kann an die Rückseite der vorgezogenen LCP Inline CW (3314.530/560/570) platziert werden, um die bestehenden Lücken im hinteren Bereich zu schließen.

Welche Stellung hat der LCP Regelkugelhahn in stromlosen Zustand?

Der Regelkugelhahn ist stromlos offen.

Im Falle eines Kabelbruches oder Ausfall der Steuerspannung vom Controller ist somit gewährleistet, dass die volle Kühlleistung zur Verfügung steht.

Was passiert, wenn die LCP Regelelektronik ausfällt?

In diesem Fall geht das LCP in einen sogenannten "Emergency Mode".

Der Regelkugelhahn öffnet zu 100 % (voller Wasserdurchfluss). Die Lüfter regeln auf maximalen Luftvolumenstrom.

Somit ist in dieser "Ausnahmesituation" die volle Kühlleistung gewährleistet.

Ist eine Anreihung von LCPs im VX Rack an TS IT möglich?

Ja. Für die bündige Variante ist das Anreihkit 5301.312 und für die vorgezogene Variante ist das Anreihkit 3311.089 zu verwenden.

Welchen Innendurchmesser hat der Kondensatablaufschlauch?

Der Kondensatablaufschlauch hat einen Innendurchmesser von 15 mm.

19 Glossar

1 HE Server:

1 HE Server sind sehr flache und tiefe, moderne Hochleistungsserver, deren Bauhöhe einer Höheneinheit (1 HE = 44,54 mm, kleinste übliche Teilung in der Höhe) entspricht. Typische Abmessungen sind ($B \times T \times H$) 19" x 800 mm x 1 HE.

Diese Systeme enthalten in der Regel 2 CPUs, mehrere GB RAM und Festplatten, so dass sie bis zu 100 m³/h Kühlluft bei max. 32 °C benötigen.

19"-Ebene:

Die Frontseiten der in einen Serverschrank eingebauten Geräte bilden die 19"-Ebene.

Bladeserver:

Stellt man Dual-CPU-Systeme senkrecht und lässt bis zu 14 Stück auf eine gemeinsame Backplane zur Signalführung und Stromversorgung zugreifen, erhält man einen sog. Bladeserver.

Bladeserver können bis zu 4,5 kW Verlustleistung pro 7 HE und 700 mm Tiefe "generieren".

"Front-to-Back"-Kühlprinzip:

Die in Serverschränke eingebauten Geräte werden in der Regel nach dem "Front to Back"-Kühlprinzip gekühlt.

Bei diesem Kühlprinzip wird Kaltluft von einer externen Klimatisierung vor der Vorderseite des Serverschranks eingeblasen und mit Hilfe der Lüfter der (im Serverschrank) verbauten Geräte horizontal durch den Serverschrank geleitet. Dabei erwärmt sich die Luft und wird an der Rückseite des Schranks wieder ausgeblasen.

Hot-Spot:

Als Hot-Spot bezeichnet man die Konzentration von Wärmeenergie auf engstem Raum.

Hot-Spots führen in der Regel zu lokalen Überhitzungen und können dadurch Systemausfälle verursachen.

Luft/Wasser-Wärmetauscher:

Luft/Wasser-Wärmetauscher funktionieren nach dem gleichen Prinzip wie Autokühler. Eine Flüssigkeit (Wasser) durchströmt den Wärmetauscher, während über seine möglichst große Oberfläche Luft zum Energieaustausch geblasen wird.

Mit einem Luft/Wasser-Wärmetauscher kann je nach Temperatur der zirkulierenden Flüssigkeit (Wasser) die umströmende Luft gekühlt oder geheizt werden.

Rückkühler:

Ein Rückkühler ist in erster Näherung mit einem Kühlschrank durchaus vergleichbar – mit Hilfe eines aktiven Kältekreislaufes wird im Gegensatz zum Haushaltskühlschrank kaltes Wasser erzeugt. Die dabei dem Wasser entnommene Wärmeenergie wird über Lüfter nach außen abgegeben. Deshalb ist es in der Regel sinnvoll, Rückkühler außerhalb von Gebäuden aufzustellen.

Rückkühler und Luft/Wasser-Wärmetauscher bilden eine übliche Kühlkombination.

Switch:

Mehrere Server kommunizieren untereinander und im Netzwerk in der Regel über sog. Switche. Diese Geräte haben auf Grund der Tatsache, dass ihre Vorderseiten mit möglichst vielen Eingängen belegt sind, häufig eine seitliche Luftführung, keine "Front to Back"-Kühlung.

Hysterese:

Beim Überschreiten eines oberen Grenzwerts (SetPtHigh) bzw. beim Unterschreiten eines unteren Grenzwerts (SetPtLow) wird eine Warnung bzw. ein Alarm sofort ausgegeben. Bei einer Hysterese von x % erlischt die Warnung bzw. der Alarm beim Unterschreiten eines oberen Grenzwerts bzw. beim Überschreiten eines unteren Grenzwerts erst bei einer Differenz von x/100*Grenzwert zum Grenzwert.

Abb. 141: "Front to Back"-Kühlprinzip mit angereihtem LCP Rack

20 Kundendienstadressen

Kontaktdaten finden Sie auf der Internetseite von Rittal unter folgender Adresse:

- https://www.rittal.de/Rittal-Standorte

Notizen

					1													
					-							-						
																	T	
-								 										_
																		_
-												-						
<u> </u>		 		 				 							 		 	
		 						 				-						-
																	T	
-								 										_
					-			 				-						
<u> </u>		 		 				 							 		 	
																		_
<u> </u>					1							1						

Rittal – The System.

Faster - better - everywhere.

- Enclosures
- Power Distribution
- Climate Control
- IT Infrastructure
- Software & Services

You can find the contact details of all Rittal companies throughout the world here.

www.rittal.com/contact

RITTAL GmbH & Co. KG Auf dem Stuetzelberg · 35745 Herborn · Germany Phone +49 2772 505-0 E-mail: info@rittal.de · www.rittal.com

ENCLOSURES

POWER DISTRIBUTION CLIMATE CONTROL

FRIEDHELM LOH GROUP